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Comparison of Visual Saliency for Dynamic Point Clouds:
Task-free vs. Task-dependent

Xuemei Zhou , Irene Viola , Silvia Rossi , Pablo Cesar

Time

Fig. 1: Fixation maps of dancer sequences with uniform temporal sampling every 30 frames. The blue regions represent task-free
conditions, while the red regions indicate task-dependent conditions. Gray areas denote nonsalient regions in both conditions, and
overlapping areas are shown as a blend of the two colormaps.

Abstract— This paper presents a Task-Free eye-tracking dataset for Dynamic Point Clouds (TF-DPC) aimed at investigating visual
attention. The dataset is composed of eye gaze and head movements collected from 24 participants observing 19 scanned dynamic
point clouds in a Virtual Reality (VR) environment with 6 degrees of freedom. We compare the visual saliency maps generated from this
dataset with those from a prior task-dependent experiment (focused on quality assessment) to explore how high-level tasks influence
human visual attention. To measure the similarity between these visual saliency maps, we apply the well-known Pearson correlation
coefficient and an adapted version of the Earth Mover’s Distance metric, which takes into account both spatial information and the
degrees of saliency. Our experimental results provide both qualitative and quantitative insights, revealing significant differences in
visual attention due to task influence. This work enhances our understanding of the visual attention for dynamic point cloud (specifically
human figures) in VR from gaze and human movement trajectories, and highlights the impact of task-dependent factors, offering
valuable guidance for advancing visual saliency models and improving VR perception.

Index Terms—dynamic point cloud, eye-tracking, task-free, visual saliency metric, similarity measurement

1 INTRODUCTION

The Human Vision System (HVS) processes vast amounts of visual
information by selectively focusing on relevant parts of the surrounding
environment. This mechanism, known as visual saliency or visual
attention, allows for efficient interpretation of complex scenes. Visual
saliency has become a key focus in image and video processing due
to its ability to efficiently identify regions of interest, improving both
processing and transmission [20, 33], with extensive studies already
conducted in this area [10, 11, 28, 43]. In particular, researchers have
investigated how the oculomotor behavior and attention is affected by
high-level visual tasks [32], such as Image Quality Assessment (IQA)
or Video Quality Assessment (VQA), compared with free viewing,
where users observe the media content as they normally would, which
results in so-called natural scene saliency. For example, Liu [36] and
Le Meur [32] have collected eye-tracking data under both free viewing
and quality assessment scenarios. Their findings suggest that the main
region of interest for image/video remains highly similar, with certain
deviations observed during quality assessment tasks.
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Recent advancements in immersive media have shifted the focus
on 3D content. Specifically, volumetric video, such as dynamic point
cloud, has become one of the most popular formats [6]. Unlike 2D
images and videos, where visual saliency has been extensively studied,
dynamic point clouds present unique challenges that have not been
fully addressed in the literature. For example, dynamic point clouds
differ from traditional video in terms of data volume, and the use of
Head-Mounted Displays (HMDs) for their consumption introduces
additional complexities. Thus, established findings for visual saliency
in image and video, such as the spatial bias [45] and central bias [62]
in fixation data, may not hold for dynamic point clouds.

One of the main challenges hindering the advancement of saliency-
guided applications for dynamic point clouds is the lack of ground-truth
saliency data. To address this gap, several studies have attempted to
collect eye-tracking data to generate ground-truth saliency maps for
point clouds. For instance, Alexiou et al. [7] conducted an eye-tracking
experiment in VR under task-dependent scenario. Nguyen et al. [40]
released an open source, task-free eye-tracking dataset for 4 dynamic
point clouds in mixed reality using Hololens 2. Zhou et al. [69] pre-
sented a task-dependent eye-tracking dataset for 50 dynamic point
clouds. A summary of existing visual attention datasets for point
clouds is shown in Table 1. These datasets, in which gaze patterns
are recorded under free viewing or different task-dependent conditions,
have been instrumental in creating ground-truth visual saliency maps
used for model design and validation. Despite these efforts, the impact
of task-free and task-dependent conditions on human visual attention
deployment in point clouds is still unexplored, unlike in its 2D counter-
part. A dataset that captures saliency maps for the same content across
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Table 1: Publicly available visual attention datasets for point clouds.
Dataset Type Stimuli Display Interaction * Visual Attention Task-free

ViAtPCVR [7] Static 8 VR � � �
QAVA-DPC [69] Dynamic 50 VR � � �

ComPEQ-MR [40] Dynamic 4 AR � � �

TF-DPC (Ours) Dynamic 19 VR � � �

* Interaction here refers to being able to move around and observe the point cloud from different angles.

different perceptual tasks in VR/AR is still needed to assess the impact
of tasks.

In this study, we aim to address these challenges by creating a novel
Task-Free dataset for Dynamic Point Clouds (TF-DPC), which will ben-
efit both the research community and provide extensive training data.
The dataset is composed of eye gaze and head movements collected
from 24 participants observing 19 scanned dynamic point cloud in a
Virtual Reality (VR) environment with 6 Degrees of Freedom (DoF).
Based on the collected data, we investigate how human visual atten-
tion is affected by high-level visual tasks, by comparing our task-free
saliency maps with those obtained in a subjective quality assessment
scenario presented in [69]. To better quantify the difference between
saliency maps in task-free and task-dependent scenarios, we use Pear-
son’s Correlation Coefficient (PCC) and a modified version of the
Earth Mover’s Distance (EMD) metric for image retrieval [55]. Our
experimental results provide both qualitative and quantitative insights,
revealing significant differences in visual attention due to task influ-
ence. For example, Figure 1 shows the fixation maps for the dancer
sequence in both task-free and task-dependent conditions (represented
by blue and red areas, respectively). Users tend to focus on different
regions of the content based on the experiment condition. Specifically,
in the task-dependent scenario, participants show a more consistent
focus on facial expressions or fine details, reflecting the specific task of
evaluating the quality of the content. To conclude, our contributions
are threefold and can be summarised as follows:

• We create a visual attention dataset for 19 original dy-
namic point clouds in a task-free VR experiment with 6-
DoF. We release all raw data, containing the gaze sam-
ples and movement trajectory collected in our study, along
with the code to compute and compare the dynamic point
cloud visual saliency maps. https://github.com/cwi-dis/
TVCG2025-TaskFree_PointCloudEyeTracking

• We provide an in-depth analysis of the collected dataset, using
quantitative measures to explore the dataset in terms of gaze
and trajectory; furthermore, we use qualitative methods to draw
further insights from interviews.

• We compare the visual saliency maps under task-free and task-
dependent conditions, to explore the impact of the high-level
quality assessment task on human visual attention.

This novel dataset offers valuable opportunities for developing re-
liable saliency models for 3D representations, which are essential for
augmented and mixed reality applications [23, 24]. For instance, they
can enable advancements in several areas, including saliency-guided
compression [44,66] and live reconstruction [51] for point cloud stream-
ing, saliency-aware point cloud mixup for data augmentation [67],
volume visualization [27], foveated rendering [54], point cloud trans-
mission [51] and visual quality assessment [12, 61, 68].

2 RELATED WORK

2.1 Visual Attention for Point Clouds
In the early stages of visual attention computation, due to the limita-
tions of eye-tracking technologies, different collection procedures for
salient points were pursued. For example, Chen et al. [14] investigate
“Schelling points" on 3D meshes, feature points selected by people
in a pure coordination game due to their salience. They designed an
online experiment that asked people to select points via mouse-tracking
technology on 3D surfaces that they expected would be selected by
other people. This dataset is widely used as a benchmark for objective
saliency detection algorithms for colorless point cloud/mesh [16, 59].
Later methods employ handcrafted descriptors [16, 35] from more low-
level geometric properties to detect the point cloud/mesh saliency, but

these approaches lack expressiveness and overlook real human view-
ing behaviors [39]. More recently, to explore the visual attention of
3D point clouds, eye-tracking experiments remain the main way to
understand human visual behaviors. Abid et al. [2] compute the visual
saliency of the point cloud considering the viewpoint from which the
3D content was seen/rendered, using an offline-computed view-based
saliency map. One eye-tracking experiment on 2D screen is conducted
to verify the proposed saliency map. Alexiou et al. [7] conduct an
eye-tracking experiment in an immersive 3D scene. A method to ex-
ploit the high-quality recorded gaze measurements is introduced based
on per-session profiling, and a scheme to determine areas of fixations
in a static point cloud is proposed. Zhou et al. [69] collect a dataset
containing the subjective opinion scores and visual saliency maps in a
VR environment using eye-tracking technology, which first establishes
a link between quality assessment and visual attention within the con-
text of the dynamic point clouds. Nguyen et al. [40] propose a dataset
with compressed dynamic point clouds, rating scores, and eye-tracking
data with Augmented Reality (AR) HMD. However, only 4 reference
dynamic point clouds have an associated visual saliency map. In our
dataset, we collected a dynamic point cloud dataset in VR with free
viewing. By using the same content as [69] and [40] and extending it
with other dynamic sequences, our dataset provides the possibility to
investigate the task impact or device impact for visual attention deploy-
ment in VR or between VR and AR, as well as using the collected data
for other applications (i.e., saliency-guided compression).

2.2 Task Impact on Visual Attention

Understanding how the allocation of human visual attention changes
depending on perceptual tasks offers clear benefits in developing tech-
niques and improving the quality of experience in VR/AR. This is a
complex behavior that holds great importance for the field of IQA/VQA.
Specifically, task-free means that the user observes the content as natu-
rally as possible, with fixation data from such free viewing commonly
used to evaluate visual saliency. In contrast, task-dependent means that
the user observes the media content to fulfill a specific task; in the case
of IQA/VQA, to evaluate the visual quality. In these experiments, the
mean opinion score (typically ranging from 1 to 5) across users serves
as the ground truth for quality evaluation.

Meur et al. [32] carry out two eye-tracking experiments on 10 orig-
inal video sequences in a free viewing and a quality assessment task,
separately. The comparison between eye movements indicates that the
degree of similarity between human priority maps is rather high. They
observe that saliency-based distortion pooling does not significantly
improve the performances of the VQA metric. Liu et al. [36] and Hani
et al. [5] perform a similar experiment procedure for IQA, Liu evaluates
whether and to what extent the addition of natural scene saliency is
beneficial to objective quality prediction in general terms, and Hani
conclude that it is not fair to compare the effect of adding saliency in
objective metrics without specifying how the saliency was measured.

In larger contexts, task effects more broadly influence visual atten-
tion in immersive environments. Hadnett-Hunter et al. [21] investi-
gated free-viewing, search, and navigation tasks in interactive virtual
environments and found task-specific differences in several human
visual attention measures, particularly during navigation. Their find-
ings demonstrated the potential for using attention data to dynamically
adapt virtual simulations and games. Hu et al. [25] analyzed eye and
head movements of participants performing free-viewing, visual search,
saliency, and tracking tasks in 360-degree VR videos. They revealed
significant task-driven differences in fixation durations, saccade ampli-
tudes, head rotation velocities, and eye-head coordination. EHTask–a
learning-based method that employs eye and head movements to rec-
ognize user tasks in VR is proposed. Their work provides meaningful
insights into human visual attention under different VR tasks and guides
future work on recognizing user tasks in VR. Malpica et al. [38] sys-
tematically examined the impact of free exploration, memory, and
visual search tasks on visual behavior in immersive scenes. They re-
ported consistent task-specific differences in eye and head movement
patterns, offering practical insights for designing task-oriented immer-
sive applications. To the best of our knowledge, we are the first to
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Fig. 2: Distribution of SI and TI of 19 source dynamic point clouds from 3
datasets, the color value is computed by

√
(SI2 +T I2).

investigate the impact of tasks on human attention deployment in the
context of dynamic point clouds, building on insights from video, VR,
and immersive media studies.

2.3 Evaluation Metrics of Saliency Maps
The deviation between two saliency maps is often quantified depend-
ing on how the visual saliency is represented [48]. Following the
evaluation metrics on 2D image saliency maps, we can divide the evalu-
ation metric into location-based metrics and distribution-based metrics.
Location-based metrics, such as AUC [22], NSS [42], IG [30], are
designed specifically for saliency evaluation, and they operate on the
ground truth represented as discrete fixation locations. On the other
hand, distribution-based metrics, such as SIM [47], PCC, KL [34],
and EMD [50], have been adapted from information theory (IG, KL-
divergence), statistics (PCC) and image matching and retrieval (SIM,
EMD), and operate on the ground truth represented as a continuous
fixation map. Interested readers can refer to [13] for more informa-
tion about the recommendation for metric selections under specific
assumptions and for specific applications. However, the aforemen-
tioned metrics are designed for grid-based 2D saliency maps, which
makes them difficult to apply to point cloud saliency maps due to the
intrinsic characteristics of dynamic point clouds. Based on the recom-
mendations for metric selection, we chose PCC and adapted EMD as
they are well-suited for evaluating distribution-based saliency maps and
can be easily extended to 3D scenarios, aligning with the nature of our
point cloud saliency maps. We further clarify our choice in Section 5.2.

3 DATASET CONSTRUCTION

To investigate how visual attention is deployed on dynamic point clouds
and compare it with task-dependent saliency maps [69], we conducted
a task-free eye-tracking experiment in a VR environment. During the
experiment, we recorded the position (x, y, z coordinates) and rotation
(three Euler angles around the x, y, and z axes) of the camera associated
with each participant’s HMD, along with timestamped data. This
information was used to analyze participants’ navigation movements
within the physical space (i.e., the floor). Gaze-related data (gaze origin
in x, y, z, and normalized gaze direction vector, the position of the point
cloud frames) was collected following the same method as in [69] to
generate saliency maps.

3.1 Materials
We select all 12 point cloud sequences from UVG-VPC dynamic point
cloud dataset [19], 5 reference sequences from the QAVQ-DPC dataset
[69], and 2 sequences from the Owlii dataset [64] for the task-free
eye-tracking experiment. We selected all the reference contents from
the QAVA-DPC dataset as it contains task-dependent visual attention
maps, thus aiding us in our purpose of comparing task-dependent and
task-free viewing, and we complemented it with additional high-quality

contents to provide additional saliency data. We compute the Spatial
Information (SI) and Temporal Information (TI) for each content [1],
by projecting the point cloud into 4 views, namely, left, right, front, and
back view, of its bounding box to apply SI and TI separately, then obtain
the maximum value among the 4 views over all the frames as the final
SI/TI for one sequence. The distribution of all dynamic point clouds
can be seen in Figure 2. The dispersed state in SI (horizontal axes)/TI
(vertical axes) shows the diversity of our contents in the spatial/temporal
domain. All the stimuli are reference quality (without any compression
distortion).

3.2 Apparatus

To ensure that the high-level task is the only variable, we used the
same apparatus as [69], to enable a fair comparison with the other task-
dependent experiment. Our experiment software is developed in Unity
(version 2021.3.10.f1). The CWI point cloud unity package (version
0.10.0) is used to import and playback the dynamic point clouds [46].
For the UVG-VPC dataset, each sequence contains 250 frames, while
other sequences contain 300 frames. The frame rate is 30 frames per
second, with each video being displayed 3 times. We use HTC Vive Pro
Eye devices with eye-tracking capabilities and Vive hand controllers
for participant interaction. The eye-tracking applications are developed
using the native HTC Vive SRanipal SDK.

We ensured a watertight appearance of all the stimuli by adjusting
the point size to the average distance among its 10 nearest neighbors
all over all points in the point cloud [57]. They are rescaled to a similar
size, around 1.8m in height, to mimic realistic tele-immersive scenarios.
The VR scene is illuminated by a virtual lamp on the ceiling centered
above the models. The lamp is set as an area light with intensity values
of 2 in Unity to simulate ordinary lighting in a room.

3.3 Procedure

In this study, we use a within-subject design. To avoid the effects of con-
textual or memory comparisons, we randomly generated a playlist for
each subject. Before the experiment, the visual acuity and color vision
of every subject was tested using Snellen [18] and Ishihara [15] charts.
Participants were briefed and signed a consent form prior to taking part
in the study. At the beginning of the session, the inter-pupillary distance
was measured and the headset was adjusted by the subject accordingly.
Then, a training session was conducted to help familiarize the subjects
with the system, including the controllers and the naming of each but-
ton to interact more easily. Two training sequence, namely loot and
redandblack, were used, which were not included in the dataset. The
subjects always started at the same location, which is 1.5 meters away
from the center of the virtual room, but could move freely from there
onward and ended anywhere they preferred. A stimulus was located in
the center of the virtual room, and each stimulus was randomly rotated
between [0◦,360◦] to avoid bias. During the experiment, the subjects
were instructed to view each model freely in the VR environment dur-
ing the playback of each sequence. The subjects were also required to
stand still while doing the calibration and error profiling.

For each subject, the test was split into two rounds, lasting for
around 17 minutes each, with a mandatory 5-minute break in between.
Before and after each round, participants were requested to fill in
a Simulator Sickness Questionnaire (SSQ) on a 1-4 discrete scale
(1=none to 4=severe) [26]. For every model and subject, a round was
split into three consecutive steps:

1 Calibration was done at the beginning of the experiment, and
only when calibration was successful users could enter into the
dynamic point cloud playback stage.

2 Inspection of models is the step where the participants are ob-
serving the dynamic point cloud naturally, while their movement
trajectory and gaze-related information are recorded.

3 Error profiling is issued as the last step in order to estimate the ac-
curacy of the gaze measurements due to calibration inaccuracies,
or HMD displacements.
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After participants finished the two rounds, they were requested to fill
out the Immersive Presence Questionnaire (IPQ)1. Last, the researchers
conducted a semi-structured interview. The interview was conducted in-
dividually in a non-VR setting, and the entire conversation was recorded
for analysis purposes.

3.4 Participants
A total of 24 participants took part in the subjective tests of this study,
with a diverse composition that includes 1 non-binary individual, 12
males, and 11 females. The participants’ ages ranged from 23 to 35,
with an average age of 28.33 and a standard deviation of 3.10. Each
participant observed all the dynamic point cloud stimuli. In terms of
occupation, the majority (66.67%) of the participants were students,
ranging from master to PhD levels. The remaining 33.34% were re-
searchers (scientist and lecturer), one landscape designer, and one
accountant. Regarding familiarity with VR devices, 5 participants had
never experienced VR before the experiment, 13 participants had in-
termediate experience (using VR 1 to 3 times), and 6 of them were
considered experts, having backgrounds as VR designers or researchers.
Additionally, 17 out of 24 participants wore glasses during the experi-
ment. No ethical approval was sought for this study, due to the absence
of an established ethical review board at the institution where the re-
search was conducted. The experimental protocol, including participant
consent and data collection, was reviewed through an internal board to
be compliant with current GDPR legislation. Participants consented
to the collection and usage of their data at the start of the experiment,
after being informed about the study.

4 EXPERIMENT RESULTS

4.1 Analysis of movements on the physical space
The analysis of the movements on the physical space is based on the
recorded data associated with the position and rotation of HMD col-
lected during experiments. For the following analysis, the data was
resampled at 30Hz. A general overview of the navigation behaviour
of participants on the floor (plane XY ) is given in Figure 3 for three
selected contents, rafa2, HelloGoodbye and CasualSpin. We chose
these volumetric point clouds based on their SI and TI values to in-
vestigate how the users movements change in relation with content
characteristics. As shown in Figure 2, rafa2 has low TI and SI, Casu-
alSpin has high value of SI while HelloGoodbye is characterised by
high TI. The volumetric content is initially placed approximately at
the center of the floor plane and since the sequences are dynamic, we
also represent their position over time with a trajectory of pink dots.
It can be noted that the first sequence is the less dynamic since rafa2
stays in its initial position (Figure 3 (a)). This brings to a more static
behaviour also from the participants who mainly stay in one location
without exploring the area around the content: there are indeed some
strong red spots which represent the position where users spent most
of their time and the shadow of the user position is quite compacted
around the content. The point cloud CasualSpin is instead spinning
around itself. In this case, participants are more spread around the
content to display it from different perspective as shown in Figure 3 (b)
but they are still quite compact. On the contrary, Figure 3 (c) shows a
more dynamic exploratory behaviour from the users while displaying
HelloGoodbye. To be noted that this sequence is also the most dynamic
one since it walks back and forward. Thus, users tend to explore more
while watching dynamic sequences, as already observed in [49].

4.2 Analysis of gaze data
To understand deeper visual exploration, we now analyze the rela-
tionship between gaze and contents. Following the same gaze data
processing in [69], we ignored the initial 400 ms gaze data of each user
to avoid unintentional gaze because of the unexpected appearance of
the dynamic point cloud. Then, only the valid gaze samples provided
by the native HTC Vive SRanipal SDK were selected. Each valid gaze
sample was processed as follows: 1) Verify the data validity of gaze
data by calculating the weighted average angular error to each gaze

1https://www.igroup.org/pq/ipq/index.php

sample with the help of GazeMetrics [9]; 2) Identify fixation points
of gaze data by dispersion threshold identification algorithm; 3) Map
gaze data to dynamic point cloud frame with truncated-cone-sector
algorithm [7]; 4) Fuse multiple users’ gaze data to dynamic point cloud
frames. After the four steps, we obtained the saliency map per frame.
Each point cloud frame has a normalized heat value range in [0,1] for
each point, 0 meaning non-salient and 1 meaning the most salient. For
the processing details, please refer to [69]. Figure 4 represents the num-
ber of fixations of each subject on each content. Specifically, each row
denotes the number of fixation points per content across the different
users. Blue colors indicate a low value of fixations while yellow ones
indicate high values. Vertically, we can notice consistent behavior per
participant across the different content. For example, User 14 always
has a low value of fixation, independent of the visualized volumetric
content, indicating a more erratic behavior. On the contrary, User 1
appears to have more consistent fixations across the content. Thus, par-
ticipants tend to preserve similar gaze behavior (highly erratic or quite
static) independently of the volumetric content. Similar outcomes were
observed also in [49]. Looking at Figure 4 per row (i.e., a single content
across different users), we can notice that contents with higher TI got
more attention: FlowerDance and model, which are characterized by
higher TI, present more fixations than rafa2. To further our analysis, in
Figure 5, we show the saliency map (randomly selected frame 150th)
for these three sequences. We can see that all three sequences show
fixations on semantically relevant areas, such as the face. However, in
FlowerDance, who is in the middle of a spinning motion, and model,
who is simply adjusting her dress, the fixation areas are smaller and
more dispersed across the content, as the users’ attention is drawn by
the motion of the dresses or any patterns on them. We further analyse
and discuss gaze data in Section 5.1.

4.3 Analysis of SSQ and IPQ data
SSQ comprises 16 symptoms which are further grouped into three
different categories: Oculomotor, Nausea, and Disorientation; we also
computed the total score according to [26]. The simulator scores in-
creased after the experiment. Specifically, the total scores rose from
6.37 to 10.33 before and after Session 1, and from 5.91 to 10.08 before
and after Session 2. However, it can be seen that breaks help in reducing
simulator sickness. The current version of the IPQ has three subscales
(Spatial Presence, Involvement, Experienced Realism) and one addi-
tional general item not belonging to a subscale. We calculate the mean
across the users for each factor. The participants experience high lev-
els of Spatial Presence (MSP = 4.5) and Involvement (MINV = 3.8),
whereas lower levels of Realisms (MREAL = 3.3). The possible reason
is that there is no interaction between the user and the content, as men-
tioned in Section 4.4.4, and there is no eye contact. The virtual room is
empty for better capturing the visual attention, which normally get a
lower score for the question: “the virtual world seemed more realistic
than the real world."

4.4 Qualitative results
22 valid interview audio recordings were transcribed into texts and
coded using Dovetail2. Following Maguire’s guideline on thematic
analysis [37], we initially reviewed and labeled the text, organized these
labels into themes, and subsequently convened to establish the con-
nection between content and visual attention during the subjective test.
Each participant is denoted as P1-P24, with the number of participants
concurring with each statement indicated in parentheses.

4.4.1 Factors that Capture Visual Attention Allocation
Temporal information Participants (18) pointed out that move-

ment is the most attractive factor in our dynamic point cloud playback
scene(P21: “when you are watching a video, it’s easy to follow the
direction of the movements”). 11 of them interpreted the information
conveyed by the content as interesting to attract their attention. How-
ever, participants (16) also noted that high-motion sequences do not
necessarily attract more attention than low-motion sequences.

2https://dovetail.com/
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(a) Rafa2 (b) CasualSpin (c) HelloGoodbye

Fig. 3: Spatial distribution over time of the main location visited by users while displaying three different content: (a) rafa2, (b) HelloGoodbye and (c)
CasualSpin. The centroid position of each volumetric content is represented by a sequence of pink points on the floor.
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Fig. 4: The fixations per subject content in the proposed TF-DPC dataset.
Each row denotes the fixations on a specific content and each column
denotes the fixations for each subject, respectively.

rafa2 FlowerDance model
Fig. 5: The visual saliency map of the 150th frame of the dynamic point
cloud with the front view.

Artifacts and Details Artifacts (9) and details (9) are identified
as the co-second factors attracting people’s attention. (P8: “what I
focused on also negative things are, on the edges of the point calls often
there was like rippling, sort of flickering, attracts a lot of attention,
distracts me, other than that, I think eyes like faces in general, people
like the expression.")

Geometry and Texture Geometry (2) and texture (7) are iden-
tified as the second and third factors influencing the subjective rating
of point clouds under scrutiny. (P3: “ I was observing precisely two
things, the edges of the body and how distorted they are and also some
distortions inside the costume.”)

In terms of visual attention allocation, temporal information proves
to be more crucial than either geometry or texture, with both geometry
and texture showing relatively low importance. The details of the
dynamic point cloud fall somewhere in between, while negative artifacts
in the point cloud attract significant attention, aligning with findings
from a previous study [60].

4.4.2 Factors Affecting Visual Attention
Participants (12) reported the realism of the content and naturalness
of the action would change their attention. (P1: “I have to say there’s
an effect, if I see the quality is good, I usually will look closer. I
will check the details. But if the quality is so poor that I can see
distortion everywhere, then I will consciously, I will realize this is not
real. So I will be less interested.") Abrupt distortions of the sequence
will shift attention, (P5: “The point cloud’s intended focal point might
end up being overlooked because the flaws draw my attention away
from it, instead I focus on the imperfections."). It is worth noting that
all the point clouds under test were of reference quality; that is, any
impairment was derived from the acquisition itself, and was not due to
any additional processing such as compression. Thus, the acquisition
methods themselves can have a significant impact on visual attention.
This observation aligns with Zhang’s conclusion [65] that distortions
always change the attended regions.

4.4.3 Factors Influencing User Interaction
Participants (14) attributed most of their movement to the need to
observe the front face to have more understanding of the human figure.
They noted that sequences showing the same human figure with only
slight variations in movement and clothing, as in the UVG-VPC dataset,
led to decreased movement and reduced interest. This repetition (5)
and the monotonous actions (5) made the task feel not engaging and
dull. Limited space (8) and cable (1) result in less movement of the
participants.

4.4.4 Designing the Construction of a Visual Attention Dataset
Content Participants favored the “longdress" (7), “soldier" (6),

and “Gymnast" (5) point cloud sequences among all the contents, de-
scribing them as both realistic and engaging. However, some partici-
pants (3) noted that there are only human figures. Additionally, they
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expressed a desire for more varied objects and increased interactivity,
such as eye contact between themselves and the content, to enhance the
immersive experience.

Display equipment for dynamic point cloud Participants
(16) stated that using an HMD in VR is a better alternative to a 2D
screen, as it provides greater immersion and freedom. (P7: “I think it’s
more intuitive if you feel more real when you see it, by 1 to 1 ratio is
like your size, it’s like next to you while on the screen it’s like really
small, you can zoom in but then the screen is not as big or you only
see maybe one part of it even though it’s a big screen, it’s not 3D.")
However, the HMD is heavy (2) and uncomfortable for prolonged use
(2), while 5 participants noted that its effectiveness depends on the
specific application.

5 COMPARISON BETWEEN TASK-FREE AND TASK-DEPENDENT

To explore how visual tasks impact the visual attention, we quanti-
tatively analyze gaze statistics and saliency map similarity between
task-free and task-dependent scenarios. To be noted these analyses are
limited to the five shared sequences across the proposed dataset and the
one presented in [69]: rafa2 (low SI, TI), dancer (medium SI, high TI),
exercise (low SI, high TI), longdress (high SI, medium TI), and soldier
(medium SI, TI).

5.1 Comparison Consistency of Gaze
To analyze the allocation of visual attention depending on the task,
we propose three measurements. We choose the total fixation number
instead of other statistics of the gaze [4] (the mean duration or scan-path
magnitude), because since the fixation is obtained through the disper-
sion threshold identification algorithm, the duration of consecutive gaze
samples is implicitly considered. Apart from gaze behavior, our focus
is on where the gaze is allocated within 3D point cloud frames. We
select the Volumes of Interest (VoI) [56], which can show how many
volumes have been observed by humans, and the distribution of the VoI,
which can tell us how their attention is dispersed across the point cloud.
VoI is computed as the total number of points whose heat value is larger
than zero, the spread of VoI is the average pairwise distance of the VoI
within the point cloud. Figure 6, from left to right, shows the fixation,
VoI, and the spread of VoI across participants in both a task-free and
task-depended experiment. We can observe the following: 1) Fixations
for all 5 sequences with variant SI and TI perform consistently. The
fixation number under task-free is lower than under task-dependent
conditions since people need to focus relatively more to evaluate the
quality of the sequences. 2) Generally, more fixations mean larger VoI
and sparser distribution of the VoI. However, this is not true for dancer
and rafa2 sequences.

To analyze the difference between tasks with respect to these mea-
sures of visual attention, we ran a set of analysis of variance (ANOVA)
tests. We grouped all fixations by task and aggregated measures by
participant for each content per frame. One-way ANOVAs indicate the
overall effect of the task on these measures. The p-value is below the
threshold (0.05) of significance for all the contents per measure except
for the spread of distributions for rafa2 and the RoI for dancer, which
are 0.1641 and 0.8008, separately. In conclusion:

• Across all 5 sequences, the number of fixations is significantly
different between task-free and task-dependent scenarios. Task-
dependent viewers, who were evaluating the quality of the content,
consistently had more fixations compared to task-free viewers,
who likely scanned the content more freely. This supports the idea
that task-related goals require more focused attention, leading to
a higher fixation count. Sequences with higher SI and TI, such as
longdress and dancer, tend to capture more attention, evidenced
by the higher number of fixations. In contrast, lower SI and TI
sequences like rafa2 generally had fewer fixations, as they may
not have been as visually engaging.

• There is a significant difference for most contents, with task-
dependent conditions leading to larger VoIs. This suggests that
when participants are given specific tasks, they distribute their
attention more widely across the point cloud (multiple specific

Table 2: Property of Evaluation Metrics for Image Saliency Map
AUC NSS IG SIM KL PCC EMD

Location-based � � �
Distribution-based � � � �
Similarity � � � � �
Dissimilarity � �
Sensitive to 0 values � � �
With spatial distance �

areas), perhaps because the tasks prompt them to explore more
regions for relevant information. While in free-viewing, they
explored generally, driven by personal curiosity or passive obser-
vation rather than the active search for specific details. dancer
stands out as the only content where both conditions cover the
same. This could mean that the nature of the dancer does not
lead to a noticeable change in the areas participants attend to,
regardless of whether they are given a task or not.

• There is a significant difference for most contents, with task-
dependent conditions leading to a broader spread of attention.
However, for rafa2, there is no significant difference between the
two conditions since it lacks of a main attention area, likely due
to its low SI and TIand no particularly engaging features to attract
viewers’ attention. As a result, people tend to look around more.
The possible reason for the higher spread of VoI for dancer while
remaining the same VoI is due to its continuous movements over
time, with the dynamic dance gestures evenly capturing attention
across the point cloud.

5.2 Comparison Consistency of Visual Saliency Map
We aim to compare the point cloud saliency map in task-free and task-
dependent scenarios. Commonly used metrics for such a comparison
are listed in Table 2. The key properties include location or distribution-
based, similarity or dissimilarity measurement, sensitivity to 0 values,
and consideration of spatial distance. Since the generated saliency
map for dynamic point clouds uses exactly the same method in [69],
which does not include an explicit fixation point on the point cloud,
the location-based metrics are not applicable to our continuous point
cloud saliency maps. Among the distribution-based metrics, SIM, as a
similarity metric, penalizes misalignment and is sensitive to missing
values and 0 values, while KL, as a dissimilarity metric, is also sensitive
to 0 values. Thus, based on the recommendation for metric selection
[13, 48] and the characteristics of our dynamic point cloud saliency
map, i.e., the majority of the points are non-salient (i.e., heat values
equal to 0), we opt not to use them. EMD, as a dissimilarity, is the
only metric that considers spatial distance. Herein we choose PCC to
measure the similarity and adapt EMD, which is used to measure the
2D saliency map, to measure the dissimilarity.

The PCC is a statistical method to measure how correlated or depen-
dent two variables are. In our scenario, given the visual saliency maps
obtained from a task-free F and task-dependent D experiment, PCC
can be defined as follows: [31]:

PCC(F,D) =
cov(F,D)

σFσD
. (1)

where cov(·) is the covariance and σ is the standard deviation. PCC
ranges from -1 to 1, with higher absolute values indicating stronger
correlation between visual saliency maps. However, PCC is sensitive
to outliers and only compares the magnitudes of corresponding points.
This makes it unable to account for shifts in point locations or partial
matches in attended areas, which are common in eye-tracking experi-
ments due to device limitations or participant preferences. This issue is
especially noticeable in large point clouds. To address this, we propose
to adapt EMD for dissimilarity measurement [50], as it better captures
the distribution of attention by incorporating spatial information. EMD
helps to alleviate the issues of point shifts and partial matches in large
volumetric content cases. Specifically, we generate the “signature" (a
feature that can represent the saliency map) by calculating a histogram
of the heat value at each point in 3D space. We denote a discrete,
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Fig. 6: Aggregation of fixations, VoI, and the spread of the distribution across participants of task-free and task-dependent experimental scenarios for
the 5 shared dynamic point clouds from both QAVQ-DPC and proposed TF-DPC datasets, separately.

(a) rafa2 (b) dancer (c) exercise (d) longdress (e) soldier

Fig. 7: Similarity of point cloud saliency maps between task-free and task-dependent scenarios through EMD (•) and PCC (•) for the shared 5
sequences per frame, separately.

finite distribution p from the saliency map obtained in the task-free
experiment as

p = {(p1,w1), . . . ,(pm,wm)} ≡ (P,w) ∈ DK×m (2)

where P = [p1, . . . , pm] ∈ RK×m represents the signature with m points
(or clusters), wi ≥ 0 represents the weight or fraction associated with
the i-th point (or cluster) for all i= 1, · · · ,m. Here K is the dimension of
ambient space (Euclidean space for 3D point cloud) of the points pi ∈
RK , and m is the number of points (or clusters). The total weight of the
distribution p is wΣ = Σm

i=1wi. Given two distributions in task-free and
task-dependent scenarios as p = (P,w) ∈ DK,m and q = (Q,u) ∈ DK,n.
We used the following EMD [50]:

EMD(p,q) =
minF=( fi j)∈F (p,q) WORK(F,p,q)

min(wΣ,uΣ)
. (3)

The EMD distance EMD(p,q) between p and q is the minimum amount
of work to match between distribution p and q, normalized by the
weight of the lighter distribution. Thus, to obtain the EMD value, we
need to find the optimal flow by solving the transportation problem.
The work done by a feasible flow F ∈ F (p,q) in matching p and q is
given by

WORK(F,p,q) =
m

∑
i=1

n

∑
j=1

fi jdi j, (4)

where di j = d(pi,q j) is the “ground distance" between pi and q j. We
consider the degree of salience and the spatial information of the point
cloud jointly, the ground distance is now defined as

di j = λ |hi −h j|+(1−λ )[(xi − x j)
2 +(yi − y j)

2 +(zi − z j)
2]

1
2 , (5)

where hi is the middle value of the ith bin of the histogram in p, and
(xi,yi,zi) is the location of the centroid point located in ith bin of p. λ
is a weight used to balance the importance between spatial information
and the magnitude of the heat value. The flow F is a feasible flow

(a) Average PCC (b) Average EMD

Fig. 8: Similarity of point cloud visual saliency maps between task-free
and task-dependent for the shared 5 sequences averaged over 300
frames, separately.

between p and q iff

fi j ≥ 0 i = 1, . . . ,m, j = 1, . . . ,n, (4.1)
n

∑
j=1

fi j ≤ wi i = 1, . . . ,m, (4.2)

m

∑
i=1

fi j ≤ u j j = 1, . . . ,n, and (4.3)

m

∑
i=1

n

∑
j=1

fi j = min(wΣ,uΣ). (4.4)

The detailed explanation for the constraints can be found in [50].
The coordinates of the distribution points are not used directly in the
EMD formulation, only the ground distances di j between points are
needed. A larger EMD indicates a larger difference between two
distributions while an EMD of zero indicates that two distributions are
the same. In this paper, we remove the points that are non-salient in
both experiments before we compute the PCC and EMD to obtain an
accurate measurement. The bin number of the histogram is set to 30, λ
is set to 0.5.

To fairly compare similarity and dissimilarity metrics, we normalize
the EMD values to [0,1] range and convert dissimilarity into similarity.
This is achieved by dividing the computed EMD by the maximum
possible EMD for a given histogram, assuming all the mass (i.e., salient
points) starting in the leftmost bin need to be moved to the rightmost
bin. The similarity score for EMD is then calculated as 1 minus the
normalized EMD. Figure 7 compares PCC and EMD values for the
shared 5 contents per frame, separately. We observe that PCC exhibits
greater variance for exercise, longdress, and soldier, as evidenced by
fluctuations in the PCC values across frames. This variability suggests
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TD TF TD TF

frame:58 ( ) frame:61( )

TD TF TD TF

frame:58 ( ) frame:61( )

Fig. 9: Saliency map visualization of soldier in frame 58 and frame 61, identified as the most similar maps using the adapted EMD and PCC metrics.
The left side of the dotted line shows the front view of the soldier, while the right side shows the back view. TD refers to the saliency map collected
under task-dependent conditions, and TF refers to task-free.

that PCC is sensitive to outliers in the saliency map, leading to greater
variation in visual similarity over time for these contents. In contrast,
EMD demonstrates more stable and consistent behavior, with values
that remain within a narrower range, indicating reduced fluctuations.
This stability arises from EMD’s consideration of spatial information
and its partial match property. Figure 8b and 8a show the average simi-
larity across frames in task-free and task-dependent scenarios. Notably,
dancer is identified as the most similar sequence by PCC, while soldier
is the most similar according to EMD. PCC’s emphasis on matching
magnitudes at the same points leads to high similarity scores for dancer,
where obvious salient regions identified by humans remain consistent
over time, independently of the task.

Combining Figure 7 and Figure 8, it becomes clear that both EMD
([0, 0.35]) and PCC ([-0.25, 0.4]) exhibit low similarity values, sug-
gesting substantial differences between task-free and task-dependent
scenarios. This highlights that task-dependent scenarios in dynamic
point clouds significantly alter human visual attention. EMD identifies
overlapping regions of attention in both scenarios, providing a more
spatially-aware similarity measure, while PCC captures sharp varia-
tions for specific content. Figure 9 shows saliency maps for soldier
at the frames with maximum similarity under EMD and PCC metrics.
Visually, the saliency in the 58th frame appears more similar than in the
61th frame, with the inset of the head showing greater overlap, particu-
larly from the back view. This comparison further demonstrates that
while both PCC and EMD have their strengths, EMD’s consideration
of spatial information makes it more suitable for evaluating saliency in
point cloud data.

5.3 Summary

Quality assessment, as a high-level perceptual task, significantly influ-
ences how visual attention is deployed when evaluating dynamic point
clouds in VR. As discussed in Section 5.1, one key observation is that
participants exhibit fewer fixations in task-free conditions compared to
task-dependent ones. This is evident in Figure 9, where task-dependent
viewers focus more on specific details, such as the spotlight on the
soldier’s hat. In contrast, task-free viewers typically form a general im-
pression, primarily attending to broader features like facial expressions,
rather than thoroughly exploring “less critical" details once they have
grasped the overall scene.

In task-dependent conditions, the demand for precise quality eval-
uation prompts participants to observe the sequence more carefully.
Their goal is to gather visual cues to assess the content’s quality, which
explains why saliency maps under the quality assessment task tend to
have a larger VoI. Additionally, due to content repetition (same content
with different quality level), participants in task-dependent conditions
are less inclined to explore the back of the point cloud, preferring the
primary areas in the front view that they deem relevant for the quality
assessment task. In task-free conditions, participants generally scan the
content broadly, focusing on prominent movements or artifacts. Since

they are not bound by a specific objective, they tend to observe both
the front and back views of the point clouds without particular focus.

The spread of the VoI, however, varies between different conditions
for different reasons. in task-dependent, participants’ attention is drawn
to specific features from head to toe, like the spotlight on the hat, the
watch on the hand, and the shoes, as shown in Figure 5 the frame 58
under task-dependent condition. Participants’ attention is more targeted,
with individual differences in strategies for assessing quality. This
variability contributes to the spread of the VoI but with greater focus on
elements that are crucial to quality judgment. In contrast, the task-free
condition reflects a more passive viewing approach. Participants form
a holistic view of the scene, only directing their gaze toward areas of
movement or obvious artifacts. Without the demand to assess quality,
their focus is less concentrated on specific details, and their viewing
patterns reflect a broader exploration of the scene.

Movement and semantic information in the dynamic point clouds,
such as facial expressions or body movements, consistently attract vi-
sual attention in both scenarios. For example, in Figure 1, participants
frequently fixate on faces across multiple frames. Interestingly, visual
attention appears to be more consistent in task-dependent conditions,
especially when it comes to fine details, regardless of whether the scene
has high or low TI. Participants are more likely to scrutinize these de-
tails to detect subtle distortions, which are critical for assigning quality
scores. This difference in attention deployment highlights how task-
driven objectives shape visual behavior, with task-dependent viewers
engaging in top-down mechanisms and task-free viewers adopting a
more relaxed, impressionistic approach.

6 DISCUSSION

6.1 Visual attention collection limitations

In this study, we collect a task-free saliency dataset for dynamic point
clouds and investigate the task impact on human attention allocation.
We observed that a central bias persists to some extent when viewing
human faces, regardless of whether the conditions are task-free or task-
dependent. However, our study is limited by the fact that TF-DPC
focuses solely on human figures, excluding other immersive content
types like landscapes or interactive objects. This limitation stems
directly from the lack of high-quality, realistic datasets of dynamic point
cloud objects, as to date, only synthetic datasets including dynamic
objects are present in the literature [58, 63]. Thus, the outcomes of
this study are valid only for the dynamic human category, and future
work should explore broader content types. We chose a wired HMD
to maintain consistency with the conditions of the previous study;
however, this choice restricted physical movement due to the HMD’s
cable, and the device’s weight and discomfort may have increased
cognitive load, potentially resulting in fewer and less stable fixation
points. To explore this, future studies should consider assessing pupil
dilation and blink rate, reliable indicators of cognitive load, alongside
gaze amplitude and fixation patterns. These constraints may limit the

Authorized licensed use limited to: TU Delft Library. Downloaded on August 29,2025 at 20:12:19 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 5, MAY 20252972

Fig. 10: The average ratio of the VoI for the shared 4 dynamic point cloud
sequences in AR and VR.

ability to collect naturally viewing saliency maps and could introduce
systematic biases. Using wireless HMDs, such as the HTC Vive Focus
Vision, could improve ecological validity. Additionally, dynamic point
clouds in high-quality XR scenarios are inherently dense, but the visual
saliency regions occupy only a small portion of the content. Increasing
the participant sample size in future studies would enhance statistical
power and improve the generalizability of the findings.

6.2 Visual saliency collection under various perceptual
tasks

The findings of our study on the impact of high-level tasks for human
visual attention deployment differ from previous research on images
[17] but align with conclusions drawn from static 3D models [53].
Specifically, similarity metrics indicate lower saliency collection for
static 3D models (PCC: 0.35) [53] compared to images (PCC: 0.84)
[17]. While task-dependent, top-down mechanism effects on overt
visual attention have been well-studied for 2D media [29], how these
findings translate to dynamic point clouds remains largely unexplored.
Additionally, there is evidence that traditional attention paradigms may
not fully apply to newer media formats, such as panoramic videos [52].
Our findings have shown that quality assessment has a significant
impact on human visual attention deployment, with both saliency maps
under task-free and quality assessment tasks focusing on semantic
area and movement. However, their focus differs, as mentioned in the
above Section 5.3. A critical question that emerges from our study is
whether saliency collected under task-free conditions or task-dependent
conditions provides greater value for specific applications, such as point
cloud quality assessment. Exploring the temporal dynamics of saliency
in dynamic point clouds–how it evolves over time under varying task
demands–critical for optimizing visual representations. Future research
should focus on exploring the temporal dynamics of saliency across
various perceptual tasks, clarifying the benefits of different saliency
detection methods, and incorporating these insights into prediction
models tailored to dynamic point clouds for specific applications.

6.3 Visual saliency collection in AR
3D visual saliency has been measured using various devices, includ-
ing eye-tracking glasses [41], AR HMD [40], and VR HMD [69].
Understanding the differences between these devices is essential for
accurately predicting saliency while accounting for factors such as spa-
tial bias [28], center bias [45], and systematic error [3]. Nguyen [40]
released saliency maps for four dynamic point clouds (namely BlueSpin,
CasualSquat, FlowerDance, and ReadyForWinter) in AR, overlapping
with our proposed TF-DPC dataset. Thus, using these four sequences,
we were able to conduct an initial analysis of saliency maps across
different devices. Notably, not every frame in the AR sequences con-
tains fixation data, so we retained only the frames with salient areas
present in both AR and VR. We computed the average VoI ratio (salient
area relative to the entire point cloud across the sequence), as shown
in Figure 10. Our findings indicate that the VoI in the AR condition is
significantly smaller than in the VR laboratory setting, with participants
primarily focusing on limited regions of the point cloud. This reduction
may be attributed to the HoloLens’ limited field of view (about 52°)
compared to VR headset (about 110°). Furthermore, since AR blends

virtual context with the real environment, users must frequently switch
contexts and refocus their gaze [8], which can further reduce fixations
on dynamic point clouds. Additionally, participants cannot view the en-
tire life-sized point cloud unless they step back. Thus, the experimental
protocol for saliency collection in AR requires careful consideration.

6.4 Evaluation metrics for the similarity of point cloud
saliency maps

Several metrics exist for quantitatively measuring the similarity of 2D
saliency maps, some of which can be adapted to static point cloud
saliency maps with minimal adjustments. However, location-based
metrics like NSS, which depend on precise fixation points, may not be
directly applicable to point clouds. Human gaze fixation corresponds to
a specific pixel in 2D images, but in 3D point clouds, the gaze ray may
not intersect with any point in space, requiring approximation methods
that introduce inaccuracies. Thus, metrics relying on fixation locations
may not be suitable for point clouds unless these approximations are
properly addressed. For distribution-based metrics, which compare the
overall spread of attention, present a different challenge: how should
we balance coverage similarity (whether the same areas are salient,
regardless of magnitude) against magnitude similarity (whether the
saliency levels are comparable)? Some scenes may show full spatial
matches but differ in magnitude, or vice versa, making it unclear which
aspect should be prioritized. This decision depends on the specific
application.

Riche et al. [48] argues that no single metric is sufficient for evalu-
ating saliency map similarity. The 3D nature of point clouds and the
relatively small salient regions further complicate this task. For dy-
namic point clouds, the added dimension of time introduces variability
due to motion, requiring spatial-temporal saliency distributions to be
more effective in measuring similarity. Especially for human dynamic
point clouds, for example, in Figure 1, the 151st frame of dancer se-
quence, should the saliency of symmetric semantic areas (the left and
right feet) be treated equivalently when we measure the similarity?
Incorporating metrics that consider temporal consistency and semantic
relationships could help capture nuances in saliency similarity, partic-
ularly in dynamic scenarios where motion and semantic equivalency,
such as symmetrical regions, play a significant role.

7 CONCLUSION

In this work, we constructed a task-free visual saliency dataset in virtual
reality with 6-DoF, comprising 19 dynamic point clouds. We analyze
gaze and movement trajectories to explore how visual attention is
allocated in dynamic point clouds. To compare the generated saliency
maps in task-free and task-dependent conditions, we evaluate gaze
statistics and the similarity of the saliency maps. Additionally, we
introduced a novel metric based on the earth mover’s distance, which
incorporates both spatial information and salience levels, enabling
us to quantify the dissimilarity of saliency maps in dynamic point
clouds. Our experimental results show that high-level tasks, such as
quality assessment, significantly affect human visual attention, and this
effect varies based on content characteristics, particularly the temporal
information.
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