
The Power of Graphs Learning in
Immersive Communications

Laura Toni
UCL - University College London

SocialXR - SPRING SCHOOL
March 4th-8th, 2024

CWI

| https://lasp-ucl.github.io

A massive thanks to

Silvia
Rossi

Pedro
Gomes

Alan
Guedes

Cagri
Ozcinar

Aljosa
Smolic

Pablo Cesar Irene
Viola

Xiaowen
Dong

Francesca De
Simone

Pascal
Frossard

2

| https://lasp-ucl.github.io

This Talk

?

Immersive Systems

3

• New modality to be

processed at high quality

• Users’ uncertainty to be

well understood

ML-Based methodologies
• The importance of

geometrical priors

• Refresh the basics

| https://lasp-ucl.github.io

• New spherical/volumetric content

• Large volume of data to store, deliver and display

• Ultra-low-delay constraints over bandwidth-limited
resources

• Uncertainty on users’ behaviour

Immersive Communications: main challenges

4

Topic II: users' behavior in XR

Topic I: dynamic point cloud processing

How can we achieve a full sense of immersion?
What are the challenges?

4

| https://lasp-ucl.github.io

Immersive Communications: main challenges

5

Topic II: users' behavior in XR

Topic I: dynamic point cloud processing

5

Graph-Based Machine Learning

6

| https://lasp-ucl.github.io

Deep Learning

Input Output

Cat
Dog
Bird
Horse

1
0
0
0

Cat
Dog
Bird
Horse

0
1
0
0

Cat
Dog
Bird
Horse

0
0
0
1

!
! = #(%)%

Functions ℑ (Ω

| https://lasp-ucl.github.io

Can we use a standard feed forward neural network
to solve computer vision tasks?

.

.

.

.

.

.

.

.

.

.

.

.

Hidden Layers
(3072 neurons)

Input
Layer

(3072 neuros)

Output
Layer

Vectorized
Image

(3072 elements)

Original
Image

(32x32x3 pixels)

Predicted
Class

…

8

…

Deep Learning

A single neuron is associated with 3072 weights, hence the 3072 neurons are
associated with 3072*3072 = 9.437.184 weights for a 32x32x3 picture.

Curse of high dimensionality!

| https://lasp-ucl.github.io9

Convolutional Neural Networks
Convolutional neural networks emulate the visual cortex where neurons process information

in their receptive fields

3 px
depth

32 px
height

32 px
width

FilterImage

3 px
depth

5 px
width

5 px
height

32x32x3 pixels (px)

Image Tensor

Image
(32x32x3)

| https://lasp-ucl.github.io

More In General

Domain Ω Signal space (Ω

#
! = #(%)%

Functions ℑ (Ω

Symmetry group

*
Group representation

+(*)
Invariance/Equivariance

10

Can we extend such geometrical
priors to less structured domains?

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Explaining Hierarchical Features in Dynamic Point
Cloud Processing

Pedro Gomes
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Silvia Rossi
Distributed Interactive System

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Laura Toni
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Abstract—This paper aims at bringing some light and under-
standing to the field of deep learning for dynamic point cloud
processing. Specifically, we focus on the hierarchical features
learning aspect, with the ultimate goal of understanding which
features are learned at the different stages of the process and
what their meaning is. Last, we bring clarity on how hierarchical
components of the network affect the learned features and
their importance for a successful learning model. This study is
conducted for point cloud prediction tasks, useful for predicting
coding applications.

Index Terms—dynamic point clouds, hierarchical learning,
explanability, prediction

I. INTRODUCTION

One major open challenge in multimedia processing is
learning spatio-temporal features for dynamic point cloud (PC)
sequences. Being able to extract such information can be es-
sential for future compression algorithms. By learning spatio-
temporal features, a predictive motion-compensated coding
approach can reduce inter-frames redundancies from the com-
pressed bitstream [1]. Similarly, a PC predictor can be used
as learning-based decoder [2]. More at large, spatio-temporal
features are important also in high-level PC downstream tasks
such as action recognition, prediction and obstacle avoidance.
As of today, one of the most successful methodology is to
learn features via deep neural networks applied to each point
(or group of points) instead of the whole PC. This enables
the consumption of the raw PC data directly, without pre-
processing steps (e.g., voxelization) that could obscure natural
invariances of the data or introduce quantization errors. An
example is the pioneer PointNet [3] architecture, which learns
global PC features by aggregating local spatial features learned
by processing each point independently.

However, in such architecture, the local structures of the PC
are neglected. From convolutional neural networks (CNNs),
we know that leveraging the local structure is a key aspect of
the success of CNNs, in which local features are extracted
from small neighborhoods, grouped into larger units, and
processed to produce higher level features. This is the well-
known “hierarchical feature extraction”, deeply used in 2D
computer vision and processing tasks. In PCs, neighboring
points form a meaningful subset that captures key semantic
information about the 3D geometry; hence they should retain
even more information than the 2D counterpart. Because of

Fig. 1: Hierarchical learning of features. The network pro-
cesses a dynamic PC at progressively larger scales to learn
features. The learned features are represented as point color
using principal component analysis (PCA).

this intuition, PointNet++ [4] introduced a hierarchical archi-
tecture for PC processing, capturing features at increasingly
larger scales along a multi-resolution hierarchy. This concept
is illustrated in Figure 1, where a PC input is processed
at different scales (middle part of the figure) to extract
hierarchical features (right side of the figure) at different
levels. At the lower level (“Local” in the figure), each point
neighborhood covers a small and densely populated region,
extracting fine geometric structures. In contrast, at the higher
levels (“Global” in the figure), the network captures coarser
structures from larger neighborhoods. Given the increasing
importance of dynamic PC sequences in a wide spectrum of
applications from automation to virtual reality, several works
have extended the PointNet++ network by introducing spatio-
temporal neighborhoods in order to learn temporal features.
Most of these works adopt hierarchical architectures [5]–[9],
which can be considered the de-facto approach for dynamic
point cloud processing today.

The common intuition is that such hierarchical architecture
allows learning more descriptive features, pushing researchers
to develop even more hierarchical (and possibly complex)
models. However, why such models work and which features
do they learn in the framework of PC processing is still not
understood and usually overlooked in the literature. Initial
understanding has been provided for the PointNet model [3],
[10]. However, such efforts are limited to the original PointNet,
which does not have a hierarchical learning architecture and it
processes static PCs only, leaving a gap in the understanding
of current PC processing models. For example, which motion
or flow is learned at the different stages of the hierarchical
architecture is unknown. Also which key components of the
networks (multi-scaling, stacking of deep nets, etc.) lead to

The input is defined as a signal living on low-dimensional

domain with associated a symmetry group

Graphs are appealing tools

11

Graphs representation

pairwise relations between

entities

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Explaining Hierarchical Features in Dynamic Point
Cloud Processing

Pedro Gomes
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Silvia Rossi
Distributed Interactive System

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Laura Toni
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Abstract—This paper aims at bringing some light and under-
standing to the field of deep learning for dynamic point cloud
processing. Specifically, we focus on the hierarchical features
learning aspect, with the ultimate goal of understanding which
features are learned at the different stages of the process and
what their meaning is. Last, we bring clarity on how hierarchical
components of the network affect the learned features and
their importance for a successful learning model. This study is
conducted for point cloud prediction tasks, useful for predicting
coding applications.

Index Terms—dynamic point clouds, hierarchical learning,
explanability, prediction

I. INTRODUCTION

One major open challenge in multimedia processing is
learning spatio-temporal features for dynamic point cloud (PC)
sequences. Being able to extract such information can be es-
sential for future compression algorithms. By learning spatio-
temporal features, a predictive motion-compensated coding
approach can reduce inter-frames redundancies from the com-
pressed bitstream [1]. Similarly, a PC predictor can be used
as learning-based decoder [2]. More at large, spatio-temporal
features are important also in high-level PC downstream tasks
such as action recognition, prediction and obstacle avoidance.
As of today, one of the most successful methodology is to
learn features via deep neural networks applied to each point
(or group of points) instead of the whole PC. This enables
the consumption of the raw PC data directly, without pre-
processing steps (e.g., voxelization) that could obscure natural
invariances of the data or introduce quantization errors. An
example is the pioneer PointNet [3] architecture, which learns
global PC features by aggregating local spatial features learned
by processing each point independently.

However, in such architecture, the local structures of the PC
are neglected. From convolutional neural networks (CNNs),
we know that leveraging the local structure is a key aspect of
the success of CNNs, in which local features are extracted
from small neighborhoods, grouped into larger units, and
processed to produce higher level features. This is the well-
known “hierarchical feature extraction”, deeply used in 2D
computer vision and processing tasks. In PCs, neighboring
points form a meaningful subset that captures key semantic
information about the 3D geometry; hence they should retain
even more information than the 2D counterpart. Because of

Fig. 1: Hierarchical learning of features. The network pro-
cesses a dynamic PC at progressively larger scales to learn
features. The learned features are represented as point color
using principal component analysis (PCA).

this intuition, PointNet++ [4] introduced a hierarchical archi-
tecture for PC processing, capturing features at increasingly
larger scales along a multi-resolution hierarchy. This concept
is illustrated in Figure 1, where a PC input is processed
at different scales (middle part of the figure) to extract
hierarchical features (right side of the figure) at different
levels. At the lower level (“Local” in the figure), each point
neighborhood covers a small and densely populated region,
extracting fine geometric structures. In contrast, at the higher
levels (“Global” in the figure), the network captures coarser
structures from larger neighborhoods. Given the increasing
importance of dynamic PC sequences in a wide spectrum of
applications from automation to virtual reality, several works
have extended the PointNet++ network by introducing spatio-
temporal neighborhoods in order to learn temporal features.
Most of these works adopt hierarchical architectures [5]–[9],
which can be considered the de-facto approach for dynamic
point cloud processing today.

The common intuition is that such hierarchical architecture
allows learning more descriptive features, pushing researchers
to develop even more hierarchical (and possibly complex)
models. However, why such models work and which features
do they learn in the framework of PC processing is still not
understood and usually overlooked in the literature. Initial
understanding has been provided for the PointNet model [3],
[10]. However, such efforts are limited to the original PointNet,
which does not have a hierarchical learning architecture and it
processes static PCs only, leaving a gap in the understanding
of current PC processing models. For example, which motion
or flow is learned at the different stages of the hierarchical
architecture is unknown. Also which key components of the
networks (multi-scaling, stacking of deep nets, etc.) lead to

Graph signal processing allows us to
capture both structure (edges) and
data (values at vertices)

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Explaining Hierarchical Features in Dynamic Point
Cloud Processing

Pedro Gomes
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Silvia Rossi
Distributed Interactive System

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Laura Toni
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Abstract—This paper aims at bringing some light and under-
standing to the field of deep learning for dynamic point cloud
processing. Specifically, we focus on the hierarchical features
learning aspect, with the ultimate goal of understanding which
features are learned at the different stages of the process and
what their meaning is. Last, we bring clarity on how hierarchical
components of the network affect the learned features and
their importance for a successful learning model. This study is
conducted for point cloud prediction tasks, useful for predicting
coding applications.

Index Terms—dynamic point clouds, hierarchical learning,
explanability, prediction

I. INTRODUCTION

One major open challenge in multimedia processing is
learning spatio-temporal features for dynamic point cloud (PC)
sequences. Being able to extract such information can be es-
sential for future compression algorithms. By learning spatio-
temporal features, a predictive motion-compensated coding
approach can reduce inter-frames redundancies from the com-
pressed bitstream [1]. Similarly, a PC predictor can be used
as learning-based decoder [2]. More at large, spatio-temporal
features are important also in high-level PC downstream tasks
such as action recognition, prediction and obstacle avoidance.
As of today, one of the most successful methodology is to
learn features via deep neural networks applied to each point
(or group of points) instead of the whole PC. This enables
the consumption of the raw PC data directly, without pre-
processing steps (e.g., voxelization) that could obscure natural
invariances of the data or introduce quantization errors. An
example is the pioneer PointNet [3] architecture, which learns
global PC features by aggregating local spatial features learned
by processing each point independently.

However, in such architecture, the local structures of the PC
are neglected. From convolutional neural networks (CNNs),
we know that leveraging the local structure is a key aspect of
the success of CNNs, in which local features are extracted
from small neighborhoods, grouped into larger units, and
processed to produce higher level features. This is the well-
known “hierarchical feature extraction”, deeply used in 2D
computer vision and processing tasks. In PCs, neighboring
points form a meaningful subset that captures key semantic
information about the 3D geometry; hence they should retain
even more information than the 2D counterpart. Because of

Fig. 1: Hierarchical learning of features. The network pro-
cesses a dynamic PC at progressively larger scales to learn
features. The learned features are represented as point color
using principal component analysis (PCA).

this intuition, PointNet++ [4] introduced a hierarchical archi-
tecture for PC processing, capturing features at increasingly
larger scales along a multi-resolution hierarchy. This concept
is illustrated in Figure 1, where a PC input is processed
at different scales (middle part of the figure) to extract
hierarchical features (right side of the figure) at different
levels. At the lower level (“Local” in the figure), each point
neighborhood covers a small and densely populated region,
extracting fine geometric structures. In contrast, at the higher
levels (“Global” in the figure), the network captures coarser
structures from larger neighborhoods. Given the increasing
importance of dynamic PC sequences in a wide spectrum of
applications from automation to virtual reality, several works
have extended the PointNet++ network by introducing spatio-
temporal neighborhoods in order to learn temporal features.
Most of these works adopt hierarchical architectures [5]–[9],
which can be considered the de-facto approach for dynamic
point cloud processing today.

The common intuition is that such hierarchical architecture
allows learning more descriptive features, pushing researchers
to develop even more hierarchical (and possibly complex)
models. However, why such models work and which features
do they learn in the framework of PC processing is still not
understood and usually overlooked in the literature. Initial
understanding has been provided for the PointNet model [3],
[10]. However, such efforts are limited to the original PointNet,
which does not have a hierarchical learning architecture and it
processes static PCs only, leaving a gap in the understanding
of current PC processing models. For example, which motion
or flow is learned at the different stages of the hierarchical
architecture is unknown. Also which key components of the
networks (multi-scaling, stacking of deep nets, etc.) lead to

pi: (xi,yi,zi)

Graphs provide mathematical

representation for data defined on

irregular domains

| https://lasp-ucl.github.io

Graphs and Graph Signal

12

weighted and undirected graph:

equivalent to G!

1

2

Zhou and Schölkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004.

| https://lasp-ucl.github.io

Graph Laplacian and Filtering

13

GFT IGFT

A measure of Smoothness Graph Fourier Transform

| https://lasp-ucl.github.io

Convolution on graphs

14

parametric filter as polynomial of Laplacian

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.

(localisation within1-hop neighbourhood)

Spectral filtering can be
seen as operation on the
vertex domain!

| https://lasp-ucl.github.io

From Grids to Graphs

Image
(32x32x3)

Filter
(5x5x3)

The Rise of Geometric Deep Learning

| https://lasp-ucl.github.io

• Similar to a normal convolution a graph convolution aggregates a neighborhood.
• Each node is processed independently, and the outputs aggregated to generate

node feature

16

GNN

Representation Learning:
• The GNN learn a point representation (feature) !! describing the node !! local

neighborhood

• By using edges, the GNN takes structure into account while learning new
representations.

!!

Graph Neural Networks

| https://lasp-ucl.github.io

Deep Learning … on graphs
Domain Ω Signal space (Ω

#
! = #(%)%

Functions ℑ (Ω

Symmetry group

*
Group representation

+(*)
Invariance/Equivariance

1

2

3
4

5
6

7

8

Graph ,: (., 0) Node Features (,

1
! = #(%)%

Functions ℑ (,

Message Passing

F(PX,PA2!) = PF(X,A)
Permutation Matrix P

18

| https://lasp-ucl.github.io

Deep Learning …on graphs

19

1

2

3
4

5
6

7

8

1

2

3
4

5
6

7

8

PointNet Transformer

1
4

3

6
7

82

5

#
! = #(%)%

Connectivity

S
tr

u
c
tu

r
e

Deep Learning
(CNN)

Input

Graph Regression

/ Classification

Node

Classification

Link

Prediction

%

| https://lasp-ucl.github.io

Taxonomy

Dong, X., Thanou, D., Toni, L., Bronstein, M., & Frossard, P., “Graph signal processing for machine learning”, IEEE SPM 2020

20

| https://lasp-ucl.github.io

• Graphs as versatile tools to model data on irregular domains

• Frequency analysis led to key insights of today GNNs

• It is essential to exploit geometrical priors when processing data

• Graph-based ML is very wide – generative models, regression

models, etc.

Take Home Message

21

| https://lasp-ucl.github.io

What Graph-Based ML in Social-XR?

22

Graph-Based Models for
Dynamic Point Cloud

Prediction

| https://lasp-ucl.github.io

?

Taxonomy

1

2

3
4

5
6

7

8

1

2

3
4

5
6

7

8

PointNet Transformer

1
4

3

6
7

82

5

Connectivity

Graph

24

| https://lasp-ucl.github.io

Point Cloud Signal

25

A point cloud is a set of points in

space representing a 3D scene

• Direct output from Lidar sensors

• Flexible

• High-spatial resolution without

discretization

• Un-ordered set of points

• No point to point correspondence

across point clouds

[Image Credit] D Thanou, PA Chou, P Frossard,”Graph-based compression of dynamic 3D point cloud sequences”, IEEE Transactions on Image Processing, 2016

pi: (xi,yi,zi)
pk: (xk,yk,zk)

| https://lasp-ucl.github.io

Point Cloud Prediction: Goal

26

Given a set of sequential point clouds, predict (short/long) term
future point clouds

• How do we represent dynamic point clouds?

• Why it is important?

• Can graphs help us?

Chapter 1. Introduction

Figure 1.5: Learning dynamic features as the main objective. As a complemen-
tary objective use the learned dynamic features for point cloud pre-
diction.

sult, conventional deep learning methods are unable to process point cloud
data.

To tackle this challenge a modern field of research named geometric
deep learning aims to develop neural networks able to learn on irregular
data. Under the umbrella of geometric deep learning, recently graph-based

techniques have gained relevance as a way to address the lack of structure
in point clouds. This is accomplished by building a graph with point cloud
data. The graph is constructed by taking the points as vertices and building
edges connecting neighboring points. This way a lightweight structure can
be imposed in the point cloud data and used to model relations between
points. Using the graph structure geometric deep learning methods are able
to learn features from the irregular data. While this approach has achieved
some success in static point cloud processing, is still an unexplored approach
for dynamic point clouds

1.4 Objectives

The main goal of thesis, is learn dynamic features from point cloud se-
quences, as illustrated in Figure 1.5. Toward this end, we propose take
graph-based approach to tackle the point cloud lack of structure and learn
dynamic features.

The learned dynamic features can be used to for other applications. As
a complementary goal we will use the learned dynamic features to make
prediction of future movements. Given a sequence of point cloud frames we
are interested in predicting future frames with no prior knowledge on the
ground truth. Our objective is to learn how to model point cloud dynamics
based on past behavior to predict future movements.

During this thesis, we will focused on point clouds sequences of human
bodies performing diverse activities, such as dancing or playing sports. We
choose a dataset of human activities, because we are interested in modeling

11

| https://lasp-ucl.github.io

A Point Based Approach

27

Chapter 2. Background

(a) Point cloud [1]. (b) 3D Mesh (c) Octree (d) Multi-view

Figure 2.2: Multiple 3D data representations.

for point cloud processing. Additionally point clouds are the direct output
of LiDAR sensors. It is practical to equip autonomous systems with LiDAR
sensors and directly process the outputted point cloud in real-time.

Let a point cloud with n points be denoted by P = {p1, p2, . . . , pn} 2
Rn⇥3, where each point is described with its 3D coordinates i.e., pi =
{xi, yi, zi}. These coordinates define the point geometric position in space.
The point can also include other attributes such as color, brightness, or
normal vectors In this thesis, we will consider both the case of a basic
point cloud (i.e only spatial information) and a colored point cloud (i.e
with color attribute). In this second case, the point cloud color attribute
is denoted by C = {c1, c2, . . . cn}, where ci = {ri, gi, bi} are the coordi-
nates in the RGB color space of the corresponding point pi. A dynamic
point cloud is a temporal sequence of point clouds. Let a point cloud
sequence of duration T be P = (P1, P2, . . . , PT) and its associated color
(if colored) be C = (C1, C2, . . . , CT). At instant t a point cloud frame is
represented by its coordinates Pt = {p1,t, p2,t, . . . pn,t} and color attributes
Ct = {c1,t, c2,t, . . . cn,t}.

3D Mesh: A polygon mesh is a collection of vertices connected by edges and
thus forming a set faces that define the shape of an object (Figure 2.2(b)).
The most common mesh uses triangular polygons to form faces. Meshes o↵er
high visual quality and easier integration with computer graphics pipeline
[14]. However, the need of the meshes to preserve the connectivity informa-
tion of the edges is a constraint for compression and transmission. Unlike
point clouds which forego the connectivity information in favor of easier
storage and simplicity.

Octree: An octree (Figure 2.2(c)) is a simplified data structure for e↵ec-
tive storage of 3D data. The octree partitions the 3D space into hierarchical
cubes (voxel). Each voxel is represented by a single byte representing if the
voxel contain a points. If this is the case the voxel can be further subdivided
into smaller voxels, until a predefined limit is reached. This e�cient mem-
ory utilization is the octree greatest advantage. However, it has a major

17

Voxel based

Chapter 2. Background

(a) Point cloud [1]. (b) 3D Mesh (c) Octree (d) Multi-view

Figure 2.2: Multiple 3D data representations.

for point cloud processing. Additionally point clouds are the direct output
of LiDAR sensors. It is practical to equip autonomous systems with LiDAR
sensors and directly process the outputted point cloud in real-time.

Let a point cloud with n points be denoted by P = {p1, p2, . . . , pn} 2
Rn⇥3, where each point is described with its 3D coordinates i.e., pi =
{xi, yi, zi}. These coordinates define the point geometric position in space.
The point can also include other attributes such as color, brightness, or
normal vectors In this thesis, we will consider both the case of a basic
point cloud (i.e only spatial information) and a colored point cloud (i.e
with color attribute). In this second case, the point cloud color attribute
is denoted by C = {c1, c2, . . . cn}, where ci = {ri, gi, bi} are the coordi-
nates in the RGB color space of the corresponding point pi. A dynamic
point cloud is a temporal sequence of point clouds. Let a point cloud
sequence of duration T be P = (P1, P2, . . . , PT) and its associated color
(if colored) be C = (C1, C2, . . . , CT). At instant t a point cloud frame is
represented by its coordinates Pt = {p1,t, p2,t, . . . pn,t} and color attributes
Ct = {c1,t, c2,t, . . . cn,t}.

3D Mesh: A polygon mesh is a collection of vertices connected by edges and
thus forming a set faces that define the shape of an object (Figure 2.2(b)).
The most common mesh uses triangular polygons to form faces. Meshes o↵er
high visual quality and easier integration with computer graphics pipeline
[14]. However, the need of the meshes to preserve the connectivity informa-
tion of the edges is a constraint for compression and transmission. Unlike
point clouds which forego the connectivity information in favor of easier
storage and simplicity.

Octree: An octree (Figure 2.2(c)) is a simplified data structure for e↵ec-
tive storage of 3D data. The octree partitions the 3D space into hierarchical
cubes (voxel). Each voxel is represented by a single byte representing if the
voxel contain a points. If this is the case the voxel can be further subdivided
into smaller voxels, until a predefined limit is reached. This e�cient mem-
ory utilization is the octree greatest advantage. However, it has a major

17

Chapter 2. Background

(a) Point cloud [1]. (b) 3D Mesh (c) Octree (d) Multi-view

Figure 2.2: Multiple 3D data representations.

for point cloud processing. Additionally point clouds are the direct output
of LiDAR sensors. It is practical to equip autonomous systems with LiDAR
sensors and directly process the outputted point cloud in real-time.

Let a point cloud with n points be denoted by P = {p1, p2, . . . , pn} 2
Rn⇥3, where each point is described with its 3D coordinates i.e., pi =
{xi, yi, zi}. These coordinates define the point geometric position in space.
The point can also include other attributes such as color, brightness, or
normal vectors In this thesis, we will consider both the case of a basic
point cloud (i.e only spatial information) and a colored point cloud (i.e
with color attribute). In this second case, the point cloud color attribute
is denoted by C = {c1, c2, . . . cn}, where ci = {ri, gi, bi} are the coordi-
nates in the RGB color space of the corresponding point pi. A dynamic
point cloud is a temporal sequence of point clouds. Let a point cloud
sequence of duration T be P = (P1, P2, . . . , PT) and its associated color
(if colored) be C = (C1, C2, . . . , CT). At instant t a point cloud frame is
represented by its coordinates Pt = {p1,t, p2,t, . . . pn,t} and color attributes
Ct = {c1,t, c2,t, . . . cn,t}.

3D Mesh: A polygon mesh is a collection of vertices connected by edges and
thus forming a set faces that define the shape of an object (Figure 2.2(b)).
The most common mesh uses triangular polygons to form faces. Meshes o↵er
high visual quality and easier integration with computer graphics pipeline
[14]. However, the need of the meshes to preserve the connectivity informa-
tion of the edges is a constraint for compression and transmission. Unlike
point clouds which forego the connectivity information in favor of easier
storage and simplicity.

Octree: An octree (Figure 2.2(c)) is a simplified data structure for e↵ec-
tive storage of 3D data. The octree partitions the 3D space into hierarchical
cubes (voxel). Each voxel is represented by a single byte representing if the
voxel contain a points. If this is the case the voxel can be further subdivided
into smaller voxels, until a predefined limit is reached. This e�cient mem-
ory utilization is the octree greatest advantage. However, it has a major

17

Graph based Point based

CNN GNN/GCN PointNet

| https://lasp-ucl.github.io

Point-Based Learning
Chapter 2. Background

(a) Point cloud [1]. (b) 3D Mesh (c) Octree (d) Multi-view

Figure 2.2: Multiple 3D data representations.

for point cloud processing. Additionally point clouds are the direct output
of LiDAR sensors. It is practical to equip autonomous systems with LiDAR
sensors and directly process the outputted point cloud in real-time.

Let a point cloud with n points be denoted by P = {p1, p2, . . . , pn} 2
Rn⇥3, where each point is described with its 3D coordinates i.e., pi =
{xi, yi, zi}. These coordinates define the point geometric position in space.
The point can also include other attributes such as color, brightness, or
normal vectors In this thesis, we will consider both the case of a basic
point cloud (i.e only spatial information) and a colored point cloud (i.e
with color attribute). In this second case, the point cloud color attribute
is denoted by C = {c1, c2, . . . cn}, where ci = {ri, gi, bi} are the coordi-
nates in the RGB color space of the corresponding point pi. A dynamic
point cloud is a temporal sequence of point clouds. Let a point cloud
sequence of duration T be P = (P1, P2, . . . , PT) and its associated color
(if colored) be C = (C1, C2, . . . , CT). At instant t a point cloud frame is
represented by its coordinates Pt = {p1,t, p2,t, . . . pn,t} and color attributes
Ct = {c1,t, c2,t, . . . cn,t}.

3D Mesh: A polygon mesh is a collection of vertices connected by edges and
thus forming a set faces that define the shape of an object (Figure 2.2(b)).
The most common mesh uses triangular polygons to form faces. Meshes o↵er
high visual quality and easier integration with computer graphics pipeline
[14]. However, the need of the meshes to preserve the connectivity informa-
tion of the edges is a constraint for compression and transmission. Unlike
point clouds which forego the connectivity information in favor of easier
storage and simplicity.

Octree: An octree (Figure 2.2(c)) is a simplified data structure for e↵ec-
tive storage of 3D data. The octree partitions the 3D space into hierarchical
cubes (voxel). Each voxel is represented by a single byte representing if the
voxel contain a points. If this is the case the voxel can be further subdivided
into smaller voxels, until a predefined limit is reached. This e�cient mem-
ory utilization is the octree greatest advantage. However, it has a major

17

Chapter 2. Background

Figure 2.6: PointNET network.

achieved since each point is operated independently. Next, symmetric ag-
gregation function

L
(for example max pooling) is applied to accumulate

features into a global feature vector that is invariant to the order of the
input. In some networks, this global feature vector is fed through another
learnable function � which then produces the final learned feature.

This operation can described as:

f(P) = �
⇣M

i2P
 (pi)

⌘
(2.2)

Where is an equivariant function applied independently to every point,L
is a permutation invariant aggregator, potentially followed by a learnable

function �. By processing each point independently, the architecture is able
to learn directly from point clouds. This independence, however, neglects the
geometric relationships among points, presenting a fundamental limitation
that cannot capture local features.

The successor architecture, PointNET++ [27] seeks to amend this short-
coming by considering neighborhoods of points. As shown in Figure 2.7
PointNET++ presented a hierarchical neural network that first partitions
the points into overlapping local regions, based on spatial distances. The
original PointNet architecture is then applied in each local region to capture
local features describing the fine geometric structures from small neighbor-
hoods. Such local features are further grouped into larger units and pro-
cessed to produce higher-level features. The process is repeated hierarchi-
cally to generate increasingly high-level features. This technique, however
still processes points independently in local regions to maintain permutation
invariance. As a result, at a local level, the relationships between points are
still not considered.

2.4.2.2 Point-based methods dynamic point clouds

In the last decade, the geometric deep learning research on point clouds has
been mainly focused on static point clouds, leaving the dynamic counterpart
overlooked. The reasons being dynamic point clouds raises several additional

24

Each point processed
independently

Aggregation function (max
pooling) invariant to the order
of the input

Chapter 2. Background

Figure 2.6: PointNET network.

achieved since each point is operated independently. Next, symmetric ag-
gregation function

L
(for example max pooling) is applied to accumulate

features into a global feature vector that is invariant to the order of the
input. In some networks, this global feature vector is fed through another
learnable function � which then produces the final learned feature.

This operation can described as:

f(P) = �
⇣M

i2P
 (pi)

⌘
(2.2)

Where is an equivariant function applied independently to every point,L
is a permutation invariant aggregator, potentially followed by a learnable

function �. By processing each point independently, the architecture is able
to learn directly from point clouds. This independence, however, neglects the
geometric relationships among points, presenting a fundamental limitation
that cannot capture local features.

The successor architecture, PointNET++ [27] seeks to amend this short-
coming by considering neighborhoods of points. As shown in Figure 2.7
PointNET++ presented a hierarchical neural network that first partitions
the points into overlapping local regions, based on spatial distances. The
original PointNet architecture is then applied in each local region to capture
local features describing the fine geometric structures from small neighbor-
hoods. Such local features are further grouped into larger units and pro-
cessed to produce higher-level features. The process is repeated hierarchi-
cally to generate increasingly high-level features. This technique, however
still processes points independently in local regions to maintain permutation
invariance. As a result, at a local level, the relationships between points are
still not considered.

2.4.2.2 Point-based methods dynamic point clouds

In the last decade, the geometric deep learning research on point clouds has
been mainly focused on static point clouds, leaving the dynamic counterpart
overlooked. The reasons being dynamic point clouds raises several additional

24

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." CVPR 2017

| https://lasp-ucl.github.io

What Does Exist in the Literature?

29

6 P. Gomes, et al.

Fig. 2. Generic state-of-art framework for point cloud prediction for interaction at time C . The architec-
ture is composed of a Dynamic Extraction (DE) phase, Feature Propagation (FP) phase and a prediction phase.

of current state-of-art (Section 3) and to highlight the novelty of the solutions proposed in this
paper (Section 4). Table 1 summarizes the main notation used throughout the paper. Without loss
of generality, we describe the iterative prediction framework depicted in Fig. 2. Given a point
cloud sequence P, at each interaction, the network processes one input point cloud %C 2 R#⇥3

and outputs the prediction of the point cloud at the next time step %̂C+1. The framework can be
described by three main phases:
(1) Dynamic Extraction (DE) phase: the network processes the input point cloud %C and extracts

the point cloud dynamic as multiple ! levels of hierarchical features (⇡1
C , ...,⇡

!
C).

(2) Feature Propagation (FP) phase: combines the learned features from multiple levels into a
single �nal dynamic feature ⇡Final

C ;
(3) Prediction phase: The �nal features are converted via a fully-connected layer into motion

vectors"C and added to the input point %C cloud to predict the point cloud %̂C+1 at the next
time step.

We now describe the DE and FP phases in more detail. Being straightforward we omit the detailed
description of the prediction phase.
2.2.1 Dynamic extraction (DE) phase. Depicted on the left part of Fig. 2, the DE phase consists of
multiple sequential RNN cells, for a total of ! levels (in the �gure ! = 3). Before being processed
by each RNN cell, the point cloud is downsampled by a Sampling and Grouping (SG) module, as
described in [29]. At each RNN cell, for each point, a dynamic feature is extracted by aggregating
information from the point spatio-temporal neighbourhood. In the majority of methods [18, 21, 25]

Terminology Description
level network layer extracting dynamic features at a speci�c resolution.

spatial features vectors describing the point’s local geometric structure.
dynamic features vectors describing the point’s dynamic behaviour.

Parameter Description
P,) sequence of point clouds, and respective number of frames.
;, !,: level,total number of levels and points per neighborhood.
,# ; original number of points and number of points at a level ; .

%;C ?8,C 2 %C point cloud and cartesian coordinates of point 8
%̂;C ?̂8,C 2 %̂C predicted point cloud and cartesian coordinates of predicted point 8
(;C B

;
8,C 2 (;C point cloud spatial features and spatial feature of point 8 .

⇡;
C 3

;
8,C 2 ⇡;

C point cloud dynamic features and dynamic feature of point 8 .
"C ,<8,C 2 "C point cloud motion vectors and motion vector of point 8 .
⇡;FP
C 3;FP8,C 2 ⇡;FP dynamic features propagated from level ; to ; � 1.

⇡Final
C 3Final8,C 2 ⇡Final point cloud �nal dynamic features and �nal feature of point 8 .

⇥FP,⇥S,⇥D,⇥R,⇥U learnable network weights
⌧C
C , ⌧

ST,;
C coordinate graph and spatio-temporal graph.

<;
8 9 message vector for node 9 to node 8 .
U;8 attention value of point 8 to the feature of level ; .

Table 1. Terminology & Notation

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

Guangming Wang, Xinrui Wu, Zhe Liu, and Hesheng Wang. 2021. Hierarchical Attention Learning of Scene Flow in 3d Point Clouds. IEEE Transactions on Image Processing (2021).
Hehe Fan, Yi Yang, and Mohan Kankanhalli. 2022. Point Spatio-temporal Transformer Networks for Point Cloud Video Modelling. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).
Hehe Fan and Yi Yang. 2019. PointRNN: Point Recurrent Neural Network for Moving Point Cloud Processing. arXiv preprint arXiv:1910.08287 (2019).

Chapter 2. Background

Figure 2.9: PointRNN cell operation.

• Failure at extracting temporal correlation.
Since grouping points only based on coordinates might connect two
points close in space but not belonging to the same segment, hence
not sharing the same motion.

• Loss of structure during point cloud prediction.

To address these shortcomings, we will take a graph-based approach. The
next section introduces graph neural networks.

2.4.3 Graph-based methods for point clouds

As explain in the previous section the biggest shortcoming of point-based
geometric deep learning on point clouds is its inability to model the rela-
tionship amongst points. Graph representation appear as a solution to this
drawback. Graph representations allow to model relations between points
by taking the points as vertices the use edges for the relations. This makes
graphs the ideal representation for point clouds.

Following this direction, some recent works have integrated graph signal
techniques for point cloud processing. Thanou et al. in [7] was one of the
first works to propose a graph-based representation of point clouds. The
authors construct the graph based on the 3D coordinates (Figure 2.10),
using knn for each point. While graph-based deep learning was not used,
the work exploits the graph structure to interpolate a dense motion field by
solving a graph-based regularization problem.

Bronstein et al [36] proposed a dynamic graph convolutional neural net-
work (DGCNN) for point cloud classification. Instead of working on indi-
vidual points like PointNet, DGCNN exploits local geometric structures by

27

| https://lasp-ucl.github.io

Dynamic Extraction Phase

30

6 P. Gomes, et al.

Fig. 2. Generic state-of-art framework for point cloud prediction for interaction at time C . The architec-
ture is composed of a Dynamic Extraction (DE) phase, Feature Propagation (FP) phase and a prediction phase.

of current state-of-art (Section 3) and to highlight the novelty of the solutions proposed in this
paper (Section 4). Table 1 summarizes the main notation used throughout the paper. Without loss
of generality, we describe the iterative prediction framework depicted in Fig. 2. Given a point
cloud sequence P, at each interaction, the network processes one input point cloud %C 2 R#⇥3

and outputs the prediction of the point cloud at the next time step %̂C+1. The framework can be
described by three main phases:
(1) Dynamic Extraction (DE) phase: the network processes the input point cloud %C and extracts

the point cloud dynamic as multiple ! levels of hierarchical features (⇡1
C , ...,⇡

!
C).

(2) Feature Propagation (FP) phase: combines the learned features from multiple levels into a
single �nal dynamic feature ⇡Final

C ;
(3) Prediction phase: The �nal features are converted via a fully-connected layer into motion

vectors"C and added to the input point %C cloud to predict the point cloud %̂C+1 at the next
time step.

We now describe the DE and FP phases in more detail. Being straightforward we omit the detailed
description of the prediction phase.
2.2.1 Dynamic extraction (DE) phase. Depicted on the left part of Fig. 2, the DE phase consists of
multiple sequential RNN cells, for a total of ! levels (in the �gure ! = 3). Before being processed
by each RNN cell, the point cloud is downsampled by a Sampling and Grouping (SG) module, as
described in [29]. At each RNN cell, for each point, a dynamic feature is extracted by aggregating
information from the point spatio-temporal neighbourhood. In the majority of methods [18, 21, 25]

Terminology Description
level network layer extracting dynamic features at a speci�c resolution.

spatial features vectors describing the point’s local geometric structure.
dynamic features vectors describing the point’s dynamic behaviour.

Parameter Description
P,) sequence of point clouds, and respective number of frames.
;, !,: level,total number of levels and points per neighborhood.
,# ; original number of points and number of points at a level ; .

%;C ?8,C 2 %C point cloud and cartesian coordinates of point 8
%̂;C ?̂8,C 2 %̂C predicted point cloud and cartesian coordinates of predicted point 8
(;C B

;
8,C 2 (;C point cloud spatial features and spatial feature of point 8 .

⇡;
C 3

;
8,C 2 ⇡;

C point cloud dynamic features and dynamic feature of point 8 .
"C ,<8,C 2 "C point cloud motion vectors and motion vector of point 8 .
⇡;FP
C 3;FP8,C 2 ⇡;FP dynamic features propagated from level ; to ; � 1.

⇡Final
C 3Final8,C 2 ⇡Final point cloud �nal dynamic features and �nal feature of point 8 .

⇥FP,⇥S,⇥D,⇥R,⇥U learnable network weights
⌧C
C , ⌧

ST,;
C coordinate graph and spatio-temporal graph.

<;
8 9 message vector for node 9 to node 8 .
U;8 attention value of point 8 to the feature of level ; .

Table 1. Terminology & Notation

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Explaining Hierarchical Features in Dynamic Point
Cloud Processing

Pedro Gomes
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Silvia Rossi
Distributed Interactive System

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Laura Toni
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Abstract—This paper aims at bringing some light and under-
standing to the field of deep learning for dynamic point cloud
processing. Specifically, we focus on the hierarchical features
learning aspect, with the ultimate goal of understanding which
features are learned at the different stages of the process and
what their meaning is. Last, we bring clarity on how hierarchical
components of the network affect the learned features and
their importance for a successful learning model. This study is
conducted for point cloud prediction tasks, useful for predicting
coding applications.

Index Terms—dynamic point clouds, hierarchical learning,
explanability, prediction

I. INTRODUCTION

One major open challenge in multimedia processing is
learning spatio-temporal features for dynamic point cloud (PC)
sequences. Being able to extract such information can be es-
sential for future compression algorithms. By learning spatio-
temporal features, a predictive motion-compensated coding
approach can reduce inter-frames redundancies from the com-
pressed bitstream [1]. Similarly, a PC predictor can be used
as learning-based decoder [2]. More at large, spatio-temporal
features are important also in high-level PC downstream tasks
such as action recognition, prediction and obstacle avoidance.
As of today, one of the most successful methodology is to
learn features via deep neural networks applied to each point
(or group of points) instead of the whole PC. This enables
the consumption of the raw PC data directly, without pre-
processing steps (e.g., voxelization) that could obscure natural
invariances of the data or introduce quantization errors. An
example is the pioneer PointNet [3] architecture, which learns
global PC features by aggregating local spatial features learned
by processing each point independently.

However, in such architecture, the local structures of the PC
are neglected. From convolutional neural networks (CNNs),
we know that leveraging the local structure is a key aspect of
the success of CNNs, in which local features are extracted
from small neighborhoods, grouped into larger units, and
processed to produce higher level features. This is the well-
known “hierarchical feature extraction”, deeply used in 2D
computer vision and processing tasks. In PCs, neighboring
points form a meaningful subset that captures key semantic
information about the 3D geometry; hence they should retain
even more information than the 2D counterpart. Because of

Fig. 1: Hierarchical learning of features. The network pro-
cesses a dynamic PC at progressively larger scales to learn
features. The learned features are represented as point color
using principal component analysis (PCA).

this intuition, PointNet++ [4] introduced a hierarchical archi-
tecture for PC processing, capturing features at increasingly
larger scales along a multi-resolution hierarchy. This concept
is illustrated in Figure 1, where a PC input is processed
at different scales (middle part of the figure) to extract
hierarchical features (right side of the figure) at different
levels. At the lower level (“Local” in the figure), each point
neighborhood covers a small and densely populated region,
extracting fine geometric structures. In contrast, at the higher
levels (“Global” in the figure), the network captures coarser
structures from larger neighborhoods. Given the increasing
importance of dynamic PC sequences in a wide spectrum of
applications from automation to virtual reality, several works
have extended the PointNet++ network by introducing spatio-
temporal neighborhoods in order to learn temporal features.
Most of these works adopt hierarchical architectures [5]–[9],
which can be considered the de-facto approach for dynamic
point cloud processing today.

The common intuition is that such hierarchical architecture
allows learning more descriptive features, pushing researchers
to develop even more hierarchical (and possibly complex)
models. However, why such models work and which features
do they learn in the framework of PC processing is still not
understood and usually overlooked in the literature. Initial
understanding has been provided for the PointNet model [3],
[10]. However, such efforts are limited to the original PointNet,
which does not have a hierarchical learning architecture and it
processes static PCs only, leaving a gap in the understanding
of current PC processing models. For example, which motion
or flow is learned at the different stages of the hierarchical
architecture is unknown. Also which key components of the
networks (multi-scaling, stacking of deep nets, etc.) lead to

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Explaining Hierarchical Features in Dynamic Point
Cloud Processing

Pedro Gomes
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Silvia Rossi
Distributed Interactive System

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Laura Toni
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Abstract—This paper aims at bringing some light and under-
standing to the field of deep learning for dynamic point cloud
processing. Specifically, we focus on the hierarchical features
learning aspect, with the ultimate goal of understanding which
features are learned at the different stages of the process and
what their meaning is. Last, we bring clarity on how hierarchical
components of the network affect the learned features and
their importance for a successful learning model. This study is
conducted for point cloud prediction tasks, useful for predicting
coding applications.

Index Terms—dynamic point clouds, hierarchical learning,
explanability, prediction

I. INTRODUCTION

One major open challenge in multimedia processing is
learning spatio-temporal features for dynamic point cloud (PC)
sequences. Being able to extract such information can be es-
sential for future compression algorithms. By learning spatio-
temporal features, a predictive motion-compensated coding
approach can reduce inter-frames redundancies from the com-
pressed bitstream [1]. Similarly, a PC predictor can be used
as learning-based decoder [2]. More at large, spatio-temporal
features are important also in high-level PC downstream tasks
such as action recognition, prediction and obstacle avoidance.
As of today, one of the most successful methodology is to
learn features via deep neural networks applied to each point
(or group of points) instead of the whole PC. This enables
the consumption of the raw PC data directly, without pre-
processing steps (e.g., voxelization) that could obscure natural
invariances of the data or introduce quantization errors. An
example is the pioneer PointNet [3] architecture, which learns
global PC features by aggregating local spatial features learned
by processing each point independently.

However, in such architecture, the local structures of the PC
are neglected. From convolutional neural networks (CNNs),
we know that leveraging the local structure is a key aspect of
the success of CNNs, in which local features are extracted
from small neighborhoods, grouped into larger units, and
processed to produce higher level features. This is the well-
known “hierarchical feature extraction”, deeply used in 2D
computer vision and processing tasks. In PCs, neighboring
points form a meaningful subset that captures key semantic
information about the 3D geometry; hence they should retain
even more information than the 2D counterpart. Because of

Fig. 1: Hierarchical learning of features. The network pro-
cesses a dynamic PC at progressively larger scales to learn
features. The learned features are represented as point color
using principal component analysis (PCA).

this intuition, PointNet++ [4] introduced a hierarchical archi-
tecture for PC processing, capturing features at increasingly
larger scales along a multi-resolution hierarchy. This concept
is illustrated in Figure 1, where a PC input is processed
at different scales (middle part of the figure) to extract
hierarchical features (right side of the figure) at different
levels. At the lower level (“Local” in the figure), each point
neighborhood covers a small and densely populated region,
extracting fine geometric structures. In contrast, at the higher
levels (“Global” in the figure), the network captures coarser
structures from larger neighborhoods. Given the increasing
importance of dynamic PC sequences in a wide spectrum of
applications from automation to virtual reality, several works
have extended the PointNet++ network by introducing spatio-
temporal neighborhoods in order to learn temporal features.
Most of these works adopt hierarchical architectures [5]–[9],
which can be considered the de-facto approach for dynamic
point cloud processing today.

The common intuition is that such hierarchical architecture
allows learning more descriptive features, pushing researchers
to develop even more hierarchical (and possibly complex)
models. However, why such models work and which features
do they learn in the framework of PC processing is still not
understood and usually overlooked in the literature. Initial
understanding has been provided for the PointNet model [3],
[10]. However, such efforts are limited to the original PointNet,
which does not have a hierarchical learning architecture and it
processes static PCs only, leaving a gap in the understanding
of current PC processing models. For example, which motion
or flow is learned at the different stages of the hierarchical
architecture is unknown. Also which key components of the
networks (multi-scaling, stacking of deep nets, etc.) lead to

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Explaining Hierarchical Features in Dynamic Point
Cloud Processing

Pedro Gomes
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Silvia Rossi
Distributed Interactive System

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Laura Toni
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Abstract—This paper aims at bringing some light and under-
standing to the field of deep learning for dynamic point cloud
processing. Specifically, we focus on the hierarchical features
learning aspect, with the ultimate goal of understanding which
features are learned at the different stages of the process and
what their meaning is. Last, we bring clarity on how hierarchical
components of the network affect the learned features and
their importance for a successful learning model. This study is
conducted for point cloud prediction tasks, useful for predicting
coding applications.

Index Terms—dynamic point clouds, hierarchical learning,
explanability, prediction

I. INTRODUCTION

One major open challenge in multimedia processing is
learning spatio-temporal features for dynamic point cloud (PC)
sequences. Being able to extract such information can be es-
sential for future compression algorithms. By learning spatio-
temporal features, a predictive motion-compensated coding
approach can reduce inter-frames redundancies from the com-
pressed bitstream [1]. Similarly, a PC predictor can be used
as learning-based decoder [2]. More at large, spatio-temporal
features are important also in high-level PC downstream tasks
such as action recognition, prediction and obstacle avoidance.
As of today, one of the most successful methodology is to
learn features via deep neural networks applied to each point
(or group of points) instead of the whole PC. This enables
the consumption of the raw PC data directly, without pre-
processing steps (e.g., voxelization) that could obscure natural
invariances of the data or introduce quantization errors. An
example is the pioneer PointNet [3] architecture, which learns
global PC features by aggregating local spatial features learned
by processing each point independently.

However, in such architecture, the local structures of the PC
are neglected. From convolutional neural networks (CNNs),
we know that leveraging the local structure is a key aspect of
the success of CNNs, in which local features are extracted
from small neighborhoods, grouped into larger units, and
processed to produce higher level features. This is the well-
known “hierarchical feature extraction”, deeply used in 2D
computer vision and processing tasks. In PCs, neighboring
points form a meaningful subset that captures key semantic
information about the 3D geometry; hence they should retain
even more information than the 2D counterpart. Because of

Fig. 1: Hierarchical learning of features. The network pro-
cesses a dynamic PC at progressively larger scales to learn
features. The learned features are represented as point color
using principal component analysis (PCA).

this intuition, PointNet++ [4] introduced a hierarchical archi-
tecture for PC processing, capturing features at increasingly
larger scales along a multi-resolution hierarchy. This concept
is illustrated in Figure 1, where a PC input is processed
at different scales (middle part of the figure) to extract
hierarchical features (right side of the figure) at different
levels. At the lower level (“Local” in the figure), each point
neighborhood covers a small and densely populated region,
extracting fine geometric structures. In contrast, at the higher
levels (“Global” in the figure), the network captures coarser
structures from larger neighborhoods. Given the increasing
importance of dynamic PC sequences in a wide spectrum of
applications from automation to virtual reality, several works
have extended the PointNet++ network by introducing spatio-
temporal neighborhoods in order to learn temporal features.
Most of these works adopt hierarchical architectures [5]–[9],
which can be considered the de-facto approach for dynamic
point cloud processing today.

The common intuition is that such hierarchical architecture
allows learning more descriptive features, pushing researchers
to develop even more hierarchical (and possibly complex)
models. However, why such models work and which features
do they learn in the framework of PC processing is still not
understood and usually overlooked in the literature. Initial
understanding has been provided for the PointNet model [3],
[10]. However, such efforts are limited to the original PointNet,
which does not have a hierarchical learning architecture and it
processes static PCs only, leaving a gap in the understanding
of current PC processing models. For example, which motion
or flow is learned at the different stages of the hierarchical
architecture is unknown. Also which key components of the
networks (multi-scaling, stacking of deep nets, etc.) lead to

Current works learn hierarchical features, what are the main
limitations?

| https://lasp-ucl.github.io

Challenges in Processing Deformable Shapes

31

6 P. Gomes, et al.

Fig. 2. Generic state-of-art framework for point cloud prediction for interaction at time C . The architec-
ture is composed of a Dynamic Extraction (DE) phase, Feature Propagation (FP) phase and a prediction phase.

of current state-of-art (Section 3) and to highlight the novelty of the solutions proposed in this
paper (Section 4). Table 1 summarizes the main notation used throughout the paper. Without loss
of generality, we describe the iterative prediction framework depicted in Fig. 2. Given a point
cloud sequence P, at each interaction, the network processes one input point cloud %C 2 R#⇥3

and outputs the prediction of the point cloud at the next time step %̂C+1. The framework can be
described by three main phases:
(1) Dynamic Extraction (DE) phase: the network processes the input point cloud %C and extracts

the point cloud dynamic as multiple ! levels of hierarchical features (⇡1
C , ...,⇡

!
C).

(2) Feature Propagation (FP) phase: combines the learned features from multiple levels into a
single �nal dynamic feature ⇡Final

C ;
(3) Prediction phase: The �nal features are converted via a fully-connected layer into motion

vectors"C and added to the input point %C cloud to predict the point cloud %̂C+1 at the next
time step.

We now describe the DE and FP phases in more detail. Being straightforward we omit the detailed
description of the prediction phase.
2.2.1 Dynamic extraction (DE) phase. Depicted on the left part of Fig. 2, the DE phase consists of
multiple sequential RNN cells, for a total of ! levels (in the �gure ! = 3). Before being processed
by each RNN cell, the point cloud is downsampled by a Sampling and Grouping (SG) module, as
described in [29]. At each RNN cell, for each point, a dynamic feature is extracted by aggregating
information from the point spatio-temporal neighbourhood. In the majority of methods [18, 21, 25]

Terminology Description
level network layer extracting dynamic features at a speci�c resolution.

spatial features vectors describing the point’s local geometric structure.
dynamic features vectors describing the point’s dynamic behaviour.

Parameter Description
P,) sequence of point clouds, and respective number of frames.
;, !,: level,total number of levels and points per neighborhood.
,# ; original number of points and number of points at a level ; .

%;C ?8,C 2 %C point cloud and cartesian coordinates of point 8
%̂;C ?̂8,C 2 %̂C predicted point cloud and cartesian coordinates of predicted point 8
(;C B

;
8,C 2 (;C point cloud spatial features and spatial feature of point 8 .

⇡;
C 3

;
8,C 2 ⇡;

C point cloud dynamic features and dynamic feature of point 8 .
"C ,<8,C 2 "C point cloud motion vectors and motion vector of point 8 .
⇡;FP
C 3;FP8,C 2 ⇡;FP dynamic features propagated from level ; to ; � 1.

⇡Final
C 3Final8,C 2 ⇡Final point cloud �nal dynamic features and �nal feature of point 8 .

⇥FP,⇥S,⇥D,⇥R,⇥U learnable network weights
⌧C
C , ⌧

ST,;
C coordinate graph and spatio-temporal graph.

<;
8 9 message vector for node 9 to node 8 .
U;8 attention value of point 8 to the feature of level ; .

Table 1. Terminology & Notation

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

Limitation 1: Lack of structural relationship between
points in point cloud prediction Chapter 2. Background

Figure 2.9: PointRNN cell operation.

• Failure at extracting temporal correlation.
Since grouping points only based on coordinates might connect two
points close in space but not belonging to the same segment, hence
not sharing the same motion.

• Loss of structure during point cloud prediction.

To address these shortcomings, we will take a graph-based approach. The
next section introduces graph neural networks.

2.4.3 Graph-based methods for point clouds

As explain in the previous section the biggest shortcoming of point-based
geometric deep learning on point clouds is its inability to model the rela-
tionship amongst points. Graph representation appear as a solution to this
drawback. Graph representations allow to model relations between points
by taking the points as vertices the use edges for the relations. This makes
graphs the ideal representation for point clouds.

Following this direction, some recent works have integrated graph signal
techniques for point cloud processing. Thanou et al. in [7] was one of the
first works to propose a graph-based representation of point clouds. The
authors construct the graph based on the 3D coordinates (Figure 2.10),
using knn for each point. While graph-based deep learning was not used,
the work exploits the graph structure to interpolate a dense motion field by
solving a graph-based regularization problem.

Bronstein et al [36] proposed a dynamic graph convolutional neural net-
work (DGCNN) for point cloud classification. Instead of working on indi-
vidual points like PointNet, DGCNN exploits local geometric structures by

27

• Point to point correspondence

Geometrical proximity is misleading

| https://lasp-ucl.github.io

Challenges in Processing Deformable Shapes

32

6 P. Gomes, et al.

Fig. 2. Generic state-of-art framework for point cloud prediction for interaction at time C . The architec-
ture is composed of a Dynamic Extraction (DE) phase, Feature Propagation (FP) phase and a prediction phase.

of current state-of-art (Section 3) and to highlight the novelty of the solutions proposed in this
paper (Section 4). Table 1 summarizes the main notation used throughout the paper. Without loss
of generality, we describe the iterative prediction framework depicted in Fig. 2. Given a point
cloud sequence P, at each interaction, the network processes one input point cloud %C 2 R#⇥3

and outputs the prediction of the point cloud at the next time step %̂C+1. The framework can be
described by three main phases:
(1) Dynamic Extraction (DE) phase: the network processes the input point cloud %C and extracts

the point cloud dynamic as multiple ! levels of hierarchical features (⇡1
C , ...,⇡

!
C).

(2) Feature Propagation (FP) phase: combines the learned features from multiple levels into a
single �nal dynamic feature ⇡Final

C ;
(3) Prediction phase: The �nal features are converted via a fully-connected layer into motion

vectors"C and added to the input point %C cloud to predict the point cloud %̂C+1 at the next
time step.

We now describe the DE and FP phases in more detail. Being straightforward we omit the detailed
description of the prediction phase.
2.2.1 Dynamic extraction (DE) phase. Depicted on the left part of Fig. 2, the DE phase consists of
multiple sequential RNN cells, for a total of ! levels (in the �gure ! = 3). Before being processed
by each RNN cell, the point cloud is downsampled by a Sampling and Grouping (SG) module, as
described in [29]. At each RNN cell, for each point, a dynamic feature is extracted by aggregating
information from the point spatio-temporal neighbourhood. In the majority of methods [18, 21, 25]

Terminology Description
level network layer extracting dynamic features at a speci�c resolution.

spatial features vectors describing the point’s local geometric structure.
dynamic features vectors describing the point’s dynamic behaviour.

Parameter Description
P,) sequence of point clouds, and respective number of frames.
;, !,: level,total number of levels and points per neighborhood.
,# ; original number of points and number of points at a level ; .

%;C ?8,C 2 %C point cloud and cartesian coordinates of point 8
%̂;C ?̂8,C 2 %̂C predicted point cloud and cartesian coordinates of predicted point 8
(;C B

;
8,C 2 (;C point cloud spatial features and spatial feature of point 8 .

⇡;
C 3

;
8,C 2 ⇡;

C point cloud dynamic features and dynamic feature of point 8 .
"C ,<8,C 2 "C point cloud motion vectors and motion vector of point 8 .
⇡;FP
C 3;FP8,C 2 ⇡;FP dynamic features propagated from level ; to ; � 1.

⇡Final
C 3Final8,C 2 ⇡Final point cloud �nal dynamic features and �nal feature of point 8 .

⇥FP,⇥S,⇥D,⇥R,⇥U learnable network weights
⌧C
C , ⌧

ST,;
C coordinate graph and spatio-temporal graph.

<;
8 9 message vector for node 9 to node 8 .
U;8 attention value of point 8 to the feature of level ; .

Table 1. Terminology & Notation

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

Limitation 1: Lack of structural relationship between
points in point cloud prediction

• Point to point correspondence

Geometrical proximity is misleading

• Shape Deformation

Chapter 5. Future Lines of Work

Figure 5.1: Graph-RNN short-term prediction of a frame of a human body se-
quence and comparison with ground truth.

5. Point cloud compression

In the following subsection, we elaborate each of these future directions
individually.

5.1 Improvement to current method

Figure 5.1 depicts the short-term prediction example of synthetic human
body sequence and comparison with ground truth. The figure demon-
strates that while the model captures the correct motion the predicted frame
presents some deformations. The loss of shape is more noticeable in shoes
and legs, the parts with higher motion. The loss of shape means the points
have too much individual freedom. Consequently, we want our graph-based
structure to impose a greater restriction on the predicted motion of individ-
ual points.

5.1.1 Graph Regularizer

To reduce the amount of deformation, we intend to take an approach based
on spectral analysts of the graph representation of the point cloud. Mimick-
ing classical signal processing, graph signals can have a spectral representa-
tion. Where one can define the notion of frequency and apply filters. The
propriety we are interested in is smoothness. We define a smooth graph, in
the node domain, when the signal in neighboring nodes has similar values.

In our current method, a graph-based representation of the point cloud
is constructed, where a motion vector is associated to each node of the
graph This motion vector can be seen as a signal residing on the graph
structure. Under the assumption that the graph is a representative support
for the motion vector, ideally neighboring nodes (connected with strong edge
weight) should have a similar motion vector. This comes from the intuition
that the graph connects points that have similar features, hence should have
similar motion. For example, all the points representing the shoe should have

43

| https://lasp-ucl.github.io

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Explaining Hierarchical Features in Dynamic Point
Cloud Processing

Pedro Gomes
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Silvia Rossi
Distributed Interactive System

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Laura Toni
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Abstract—This paper aims at bringing some light and under-
standing to the field of deep learning for dynamic point cloud
processing. Specifically, we focus on the hierarchical features
learning aspect, with the ultimate goal of understanding which
features are learned at the different stages of the process and
what their meaning is. Last, we bring clarity on how hierarchical
components of the network affect the learned features and
their importance for a successful learning model. This study is
conducted for point cloud prediction tasks, useful for predicting
coding applications.

Index Terms—dynamic point clouds, hierarchical learning,
explanability, prediction

I. INTRODUCTION

One major open challenge in multimedia processing is
learning spatio-temporal features for dynamic point cloud (PC)
sequences. Being able to extract such information can be es-
sential for future compression algorithms. By learning spatio-
temporal features, a predictive motion-compensated coding
approach can reduce inter-frames redundancies from the com-
pressed bitstream [1]. Similarly, a PC predictor can be used
as learning-based decoder [2]. More at large, spatio-temporal
features are important also in high-level PC downstream tasks
such as action recognition, prediction and obstacle avoidance.
As of today, one of the most successful methodology is to
learn features via deep neural networks applied to each point
(or group of points) instead of the whole PC. This enables
the consumption of the raw PC data directly, without pre-
processing steps (e.g., voxelization) that could obscure natural
invariances of the data or introduce quantization errors. An
example is the pioneer PointNet [3] architecture, which learns
global PC features by aggregating local spatial features learned
by processing each point independently.

However, in such architecture, the local structures of the PC
are neglected. From convolutional neural networks (CNNs),
we know that leveraging the local structure is a key aspect of
the success of CNNs, in which local features are extracted
from small neighborhoods, grouped into larger units, and
processed to produce higher level features. This is the well-
known “hierarchical feature extraction”, deeply used in 2D
computer vision and processing tasks. In PCs, neighboring
points form a meaningful subset that captures key semantic
information about the 3D geometry; hence they should retain
even more information than the 2D counterpart. Because of

Fig. 1: Hierarchical learning of features. The network pro-
cesses a dynamic PC at progressively larger scales to learn
features. The learned features are represented as point color
using principal component analysis (PCA).

this intuition, PointNet++ [4] introduced a hierarchical archi-
tecture for PC processing, capturing features at increasingly
larger scales along a multi-resolution hierarchy. This concept
is illustrated in Figure 1, where a PC input is processed
at different scales (middle part of the figure) to extract
hierarchical features (right side of the figure) at different
levels. At the lower level (“Local” in the figure), each point
neighborhood covers a small and densely populated region,
extracting fine geometric structures. In contrast, at the higher
levels (“Global” in the figure), the network captures coarser
structures from larger neighborhoods. Given the increasing
importance of dynamic PC sequences in a wide spectrum of
applications from automation to virtual reality, several works
have extended the PointNet++ network by introducing spatio-
temporal neighborhoods in order to learn temporal features.
Most of these works adopt hierarchical architectures [5]–[9],
which can be considered the de-facto approach for dynamic
point cloud processing today.

The common intuition is that such hierarchical architecture
allows learning more descriptive features, pushing researchers
to develop even more hierarchical (and possibly complex)
models. However, why such models work and which features
do they learn in the framework of PC processing is still not
understood and usually overlooked in the literature. Initial
understanding has been provided for the PointNet model [3],
[10]. However, such efforts are limited to the original PointNet,
which does not have a hierarchical learning architecture and it
processes static PCs only, leaving a gap in the understanding
of current PC processing models. For example, which motion
or flow is learned at the different stages of the hierarchical
architecture is unknown. Also which key components of the
networks (multi-scaling, stacking of deep nets, etc.) lead to

Global movement
Local movement

Local movement

Challenges in Processing Complex Motion:
??

Opening the black-box:

• Disentangling effects

• MVs interpretation

33

Challenges in Processing Deformable Shapes

| https://lasp-ucl.github.io

Understanding Learning Hierarchical Features

34

PC processing strategy which is common to other downstream
tasks, such as classification [5] and segmentation [6].

III. EXPERIMENTAL STUDY

In this section, we present the different architectures along
with the dataset and simulation settings used in our study.

A. Dataset
Similarly to [7], we use the human Mixamo [11] dataset,

consisting of sequences of human bodies while performing
various dynamic activities such as dancing or playing sports.
The main motivations behind this selection are given in the
following: compared to real 3D scenes acquired by LiDAR
or mmWave sensors, such synthetic dataset does not suffer
from acquisition noise or quantization distortion. This makes
the dataset easy to visualize and hence to comprehend, while
also isolating the problem of learning features from noisy
corrections and other aspects that may arise in a more noisy
dataset. Additionally, the synthetic dataset allow us to generate
very different movements (from quite simply like walking to
highly complicating such as breakdance steps) and study the
learning of the highly descriptive features in such cases.

B. Experimental Architectures
To better understand and explain the hierarchical fea-

tures learning, different architectures have been implemented,
trained and compared to the Classic hierarchical architecture
depicted in Figure 2. The key idea is to isolate the multi-
scale resolution, from the “deepness” of the architecture,
disentangling in such a way the different aspects of the PC
processing. The common aspects of all implemented solutions
is the high level architecture depicted in Section II: a DE phase
(with L = 3 and downsampling factor in SG of four), a FP
phase and a final prediction step. On the other side, the models
differentiate in the RNN processing (stacked or parallel), as
well as in the sampling modules. Specifically, we implemented
the following architectures:

• Shallow hierarchical architecture – Figure 3 a): as in
Classic architecture, the PC is sub-sampled in a stacked
fashion, leading to a very sparse PC at level L = 3.
Unlike the Classic architecture, the RNN cells are in
parallel (instead of stacked), leading to a Shallow network
(local features are not grouped and processed at higher
levels). This network highlights the effect of multi-scaling
(sampling) instead of deep hierarchical learning.

• Single-scale architecture – Figure 3 b): Same architecture
as in Classic hierarchical model but without the down-
sampling modules at each level. Hence, all the levels
process the same number points and learn features at the
same scale.

• Without-combination architecture – Figure 3 c): this archi-
tecture recall the classic deep neural network in which
local features are extracted from small neighborhoods
(first RNN cell) and processed at higher (subsequent)
level. Only the last level feature is then used for the final
reconstruction. Note that in the Classic architecture all

(a) Shallow hierarchical architecture

(b) Single-scale hierarchical architecture

(c) Without-combination hierarchical architecture

Fig. 3: Experimental architectures.

features learned at different level are used for predicting
the final motion vectors.

C. Results Evaluation and Visualization

The above models, as well as the Classic one, are trained
using as loss function a combination of the Chamfer distance
(CD) [14] and earth’s moving distance (EMD) [14] to measure
the distance between predicted P̂t+1 and the target PC Pt+1, as
explained in [7]. Those metrics are also used for the evaluation
of PC prediction in the experimental results discussion. It is
worth noting that the CD distance tends to flatten all scores
toward zero values. This is because in the PC the majority of
the points are perfectly predicted (all points with no motion
or little motion) and most of the errors (high CD scores)
are focused in the high motion area. This is the area of
strongest interest in PC prediction tasks as we are interested
in understanding if the neural network is able to capture
such movements. Therefore, we also consider the CD Top 5%
metric, which looks at the CD metric of the 5% points with
the worst prediction (i.e., points with the farthest distance to
their closest point).

Besides the aforementioned metrics, we also visualize the
features learned at each level as motion vectors. This is a key
aspect to better understand the hierarchical learning process,
the goal of this paper. As shown in Figure 2, the motion vectors
are obtained by combining features from multiple levels in the
FP phase. The final features are then processed by a last fully
connected layer and converted into motion vectors. We are
interested in visualizing the actual contribution to the final
motion vectors from each level. We do this by seeing the
motion vectors as the combination of motion vectors produced
at each level i.e., Mt =

PL
l M l

t , with Mt being the predicted
motion vectors and M l

t the motion vectors produced by level
l. Such level contribution M l

t is visualized by keeping the
features from level l and setting to zero the remaining ones
at the input of the FP phase. We then replicate the FP and

6 P. Gomes, et al.

Fig. 2. Generic state-of-art framework for point cloud prediction for interaction at time C . The architec-
ture is composed of a Dynamic Extraction (DE) phase, Feature Propagation (FP) phase and a prediction phase.

of current state-of-art (Section 3) and to highlight the novelty of the solutions proposed in this
paper (Section 4). Table 1 summarizes the main notation used throughout the paper. Without loss
of generality, we describe the iterative prediction framework depicted in Fig. 2. Given a point
cloud sequence P, at each interaction, the network processes one input point cloud %C 2 R#⇥3

and outputs the prediction of the point cloud at the next time step %̂C+1. The framework can be
described by three main phases:
(1) Dynamic Extraction (DE) phase: the network processes the input point cloud %C and extracts

the point cloud dynamic as multiple ! levels of hierarchical features (⇡1
C , ...,⇡

!
C).

(2) Feature Propagation (FP) phase: combines the learned features from multiple levels into a
single �nal dynamic feature ⇡Final

C ;
(3) Prediction phase: The �nal features are converted via a fully-connected layer into motion

vectors"C and added to the input point %C cloud to predict the point cloud %̂C+1 at the next
time step.

We now describe the DE and FP phases in more detail. Being straightforward we omit the detailed
description of the prediction phase.
2.2.1 Dynamic extraction (DE) phase. Depicted on the left part of Fig. 2, the DE phase consists of
multiple sequential RNN cells, for a total of ! levels (in the �gure ! = 3). Before being processed
by each RNN cell, the point cloud is downsampled by a Sampling and Grouping (SG) module, as
described in [29]. At each RNN cell, for each point, a dynamic feature is extracted by aggregating
information from the point spatio-temporal neighbourhood. In the majority of methods [18, 21, 25]

Terminology Description
level network layer extracting dynamic features at a speci�c resolution.

spatial features vectors describing the point’s local geometric structure.
dynamic features vectors describing the point’s dynamic behaviour.

Parameter Description
P,) sequence of point clouds, and respective number of frames.
;, !,: level,total number of levels and points per neighborhood.
,# ; original number of points and number of points at a level ; .

%;C ?8,C 2 %C point cloud and cartesian coordinates of point 8
%̂;C ?̂8,C 2 %̂C predicted point cloud and cartesian coordinates of predicted point 8
(;C B

;
8,C 2 (;C point cloud spatial features and spatial feature of point 8 .

⇡;
C 3

;
8,C 2 ⇡;

C point cloud dynamic features and dynamic feature of point 8 .
"C ,<8,C 2 "C point cloud motion vectors and motion vector of point 8 .
⇡;FP
C 3;FP8,C 2 ⇡;FP dynamic features propagated from level ; to ; � 1.

⇡Final
C 3Final8,C 2 ⇡Final point cloud �nal dynamic features and �nal feature of point 8 .

⇥FP,⇥S,⇥D,⇥R,⇥U learnable network weights
⌧C
C , ⌧

ST,;
C coordinate graph and spatio-temporal graph.

<;
8 9 message vector for node 9 to node 8 .
U;8 attention value of point 8 to the feature of level ; .

Table 1. Terminology & Notation

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

PC processing strategy which is common to other downstream
tasks, such as classification [5] and segmentation [6].

III. EXPERIMENTAL STUDY

In this section, we present the different architectures along
with the dataset and simulation settings used in our study.

A. Dataset
Similarly to [7], we use the human Mixamo [11] dataset,

consisting of sequences of human bodies while performing
various dynamic activities such as dancing or playing sports.
The main motivations behind this selection are given in the
following: compared to real 3D scenes acquired by LiDAR
or mmWave sensors, such synthetic dataset does not suffer
from acquisition noise or quantization distortion. This makes
the dataset easy to visualize and hence to comprehend, while
also isolating the problem of learning features from noisy
corrections and other aspects that may arise in a more noisy
dataset. Additionally, the synthetic dataset allow us to generate
very different movements (from quite simply like walking to
highly complicating such as breakdance steps) and study the
learning of the highly descriptive features in such cases.

B. Experimental Architectures
To better understand and explain the hierarchical fea-

tures learning, different architectures have been implemented,
trained and compared to the Classic hierarchical architecture
depicted in Figure 2. The key idea is to isolate the multi-
scale resolution, from the “deepness” of the architecture,
disentangling in such a way the different aspects of the PC
processing. The common aspects of all implemented solutions
is the high level architecture depicted in Section II: a DE phase
(with L = 3 and downsampling factor in SG of four), a FP
phase and a final prediction step. On the other side, the models
differentiate in the RNN processing (stacked or parallel), as
well as in the sampling modules. Specifically, we implemented
the following architectures:

• Shallow hierarchical architecture – Figure 3 a): as in
Classic architecture, the PC is sub-sampled in a stacked
fashion, leading to a very sparse PC at level L = 3.
Unlike the Classic architecture, the RNN cells are in
parallel (instead of stacked), leading to a Shallow network
(local features are not grouped and processed at higher
levels). This network highlights the effect of multi-scaling
(sampling) instead of deep hierarchical learning.

• Single-scale architecture – Figure 3 b): Same architecture
as in Classic hierarchical model but without the down-
sampling modules at each level. Hence, all the levels
process the same number points and learn features at the
same scale.

• Without-combination architecture – Figure 3 c): this archi-
tecture recall the classic deep neural network in which
local features are extracted from small neighborhoods
(first RNN cell) and processed at higher (subsequent)
level. Only the last level feature is then used for the final
reconstruction. Note that in the Classic architecture all

(a) Shallow hierarchical architecture

(b) Single-scale hierarchical architecture

(c) Without-combination hierarchical architecture

Fig. 3: Experimental architectures.

features learned at different level are used for predicting
the final motion vectors.

C. Results Evaluation and Visualization

The above models, as well as the Classic one, are trained
using as loss function a combination of the Chamfer distance
(CD) [14] and earth’s moving distance (EMD) [14] to measure
the distance between predicted P̂t+1 and the target PC Pt+1, as
explained in [7]. Those metrics are also used for the evaluation
of PC prediction in the experimental results discussion. It is
worth noting that the CD distance tends to flatten all scores
toward zero values. This is because in the PC the majority of
the points are perfectly predicted (all points with no motion
or little motion) and most of the errors (high CD scores)
are focused in the high motion area. This is the area of
strongest interest in PC prediction tasks as we are interested
in understanding if the neural network is able to capture
such movements. Therefore, we also consider the CD Top 5%
metric, which looks at the CD metric of the 5% points with
the worst prediction (i.e., points with the farthest distance to
their closest point).

Besides the aforementioned metrics, we also visualize the
features learned at each level as motion vectors. This is a key
aspect to better understand the hierarchical learning process,
the goal of this paper. As shown in Figure 2, the motion vectors
are obtained by combining features from multiple levels in the
FP phase. The final features are then processed by a last fully
connected layer and converted into motion vectors. We are
interested in visualizing the actual contribution to the final
motion vectors from each level. We do this by seeing the
motion vectors as the combination of motion vectors produced
at each level i.e., Mt =

PL
l M l

t , with Mt being the predicted
motion vectors and M l

t the motion vectors produced by level
l. Such level contribution M l

t is visualized by keeping the
features from level l and setting to zero the remaining ones
at the input of the FP phase. We then replicate the FP and

Is Stacked effect the key?

Is Skip-Link connection the key?

Is Multi-Scale effect the key?

Pedro Gomes, Silvia Rossi, and Laura Toni, “Explaining Hierarchical Features in Dynamic Point Cloud Processing”, IEEE PCS 2022.

| https://lasp-ucl.github.io

An “Interpretability” Perspective

35

Hierarchical features learning is essential, but is it good enough?
AGAR: A�ention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable Objects 9

(a) Man-Running. (b)Woman-Running.
Fig. 4. Hierarchical of dynamic features as motion vectors given for two input sequences (Man-Running
and Woman-Running). For each sequence, the figure shows input dynamic point cloud; multi-scale neigh-
bourhood at di�erent levels; motion vectors learned at each level of the network.

In our explainabilitywork [12], we have demonstrated thatmotion vectors inferred by hierarchical
architectures (Fig.2) can be disentangled into individualmotion vectors produced at each hierarchical
level, as follows.

"C =
!’
;

";
C , where ";

C = ⇠;0BB82;�% (⇡;
C) (3)

where ⇠;0BB82;�% is the function that replicates the operation of the Classic-FP in a disentangle
manner converting the learned feature at each level ; to an individual motion vector";

C , and"C is
the �nal predicted motion vectors outputted by the network. This leads to the interpretation that
current approaches in the literaturemodel complex motions as a combination of local and
global motions, which are learned as hierarchical dynamic features. This is illustrated in Fig. 4
which depicts the dynamic features as motion vectors and the hierarchical neighbourhoods given
two point cloud sequences as input to a state-of-art prediction architecture (presented in Fig.2)
with three levels (! = 3) [12]. In both sequences, it can be seen that the lower level learns features
only by looking at points in a small area (top gold squares in the �gure). In contrast, the higher
level learns features by considering a sparser set of points in a large area (bottom blue squares in
the �gure). In the example in Fig.4 (a), in which the runner’s foot performs a complex motion, it
can be observed that the lowest level captures small and diverse motions (e.g., rotation of the heel)
"1

C , while the highest level learns the forward motion of the entire body"3
C .

This interpretation of features as motion vectors can be generalized for the majority of current
methods because while they di�er in the feature extraction process, they all share the Classic-FP
strategy to perform the motion reconstruction process. As such we elaborate on this explainability
technique to identify current state-of-art framework limitations to predict complexmotions. Namely,
the motion vector prediction is obtained by combining the dynamic features from the di�erent
levels via a learned weighted combination. However, each point motion is obtained using the same
set of combination weights [⇥1

FP, . . . ,⇥
!
FP] for all points, frames, and sequences. As a result for

every point, regardless of its position space and time, the predicted motion is obtained by the
same �xed combination of local, medium and global motions. Based on this technique we can
understand that 8) di�erent features can be associated with the di�erent levels of motions forming
the complex resultant motion, and 88) knowing di�erent parts of the objects might be subject to
di�erent types of movements highlights the strong limitation in having the same combination of
motion levels. Speci�cally, while a set of weights might lead to the appropriate combination of the
motion vectors in Fig.4 (a), in which a local movement is analysed (foot), it does not hold in the
case of the "Woman-Running sequence in Fig.4 (b), in which a more global movement is highlighted
(torso). The points in the lower torso perform a rigid movement forward corresponding to the global
motion of the body, while the lower part of the body performs a quite dynamic rotation of the foot.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

| https://lasp-ucl.github.io

Challenges in Processing Deformable Shapes

36

6 P. Gomes, et al.

Fig. 2. Generic state-of-art framework for point cloud prediction for interaction at time C . The architec-
ture is composed of a Dynamic Extraction (DE) phase, Feature Propagation (FP) phase and a prediction phase.

of current state-of-art (Section 3) and to highlight the novelty of the solutions proposed in this
paper (Section 4). Table 1 summarizes the main notation used throughout the paper. Without loss
of generality, we describe the iterative prediction framework depicted in Fig. 2. Given a point
cloud sequence P, at each interaction, the network processes one input point cloud %C 2 R#⇥3

and outputs the prediction of the point cloud at the next time step %̂C+1. The framework can be
described by three main phases:
(1) Dynamic Extraction (DE) phase: the network processes the input point cloud %C and extracts

the point cloud dynamic as multiple ! levels of hierarchical features (⇡1
C , ...,⇡

!
C).

(2) Feature Propagation (FP) phase: combines the learned features from multiple levels into a
single �nal dynamic feature ⇡Final

C ;
(3) Prediction phase: The �nal features are converted via a fully-connected layer into motion

vectors"C and added to the input point %C cloud to predict the point cloud %̂C+1 at the next
time step.

We now describe the DE and FP phases in more detail. Being straightforward we omit the detailed
description of the prediction phase.
2.2.1 Dynamic extraction (DE) phase. Depicted on the left part of Fig. 2, the DE phase consists of
multiple sequential RNN cells, for a total of ! levels (in the �gure ! = 3). Before being processed
by each RNN cell, the point cloud is downsampled by a Sampling and Grouping (SG) module, as
described in [29]. At each RNN cell, for each point, a dynamic feature is extracted by aggregating
information from the point spatio-temporal neighbourhood. In the majority of methods [18, 21, 25]

Terminology Description
level network layer extracting dynamic features at a speci�c resolution.

spatial features vectors describing the point’s local geometric structure.
dynamic features vectors describing the point’s dynamic behaviour.

Parameter Description
P,) sequence of point clouds, and respective number of frames.
;, !,: level,total number of levels and points per neighborhood.
,# ; original number of points and number of points at a level ; .

%;C ?8,C 2 %C point cloud and cartesian coordinates of point 8
%̂;C ?̂8,C 2 %̂C predicted point cloud and cartesian coordinates of predicted point 8
(;C B

;
8,C 2 (;C point cloud spatial features and spatial feature of point 8 .

⇡;
C 3

;
8,C 2 ⇡;

C point cloud dynamic features and dynamic feature of point 8 .
"C ,<8,C 2 "C point cloud motion vectors and motion vector of point 8 .
⇡;FP
C 3;FP8,C 2 ⇡;FP dynamic features propagated from level ; to ; � 1.

⇡Final
C 3Final8,C 2 ⇡Final point cloud �nal dynamic features and �nal feature of point 8 .

⇥FP,⇥S,⇥D,⇥R,⇥U learnable network weights
⌧C
C , ⌧

ST,;
C coordinate graph and spatio-temporal graph.

<;
8 9 message vector for node 9 to node 8 .
U;8 attention value of point 8 to the feature of level ; .

Table 1. Terminology & Notation

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

Limitation 2: the fixed combination of hierarchical features in the
prediction phase

Shared (among points)
learnable weights

AGAR: A�ention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable Objects 7

the neighbourhood of each point is de�ned as the : nearest neighbour (k-nn) points in the previous
frame, where the proximity is measured using the Euclidean distance between point 3D coordinates.
The RNN cells are sequentially stacked in order to have the dynamic features learned at an RNN cell
be the input of the next RNN cell. It is worth noting that the subsequent sampling, which results
in a sparser point cloud at later levels/RNN cells, is responsible for the creation of hierarchical
neighbourhoods with a progressively larger geometric distance between points. Thus, the �rst
level (; = 1) learns local dynamic features ⇡1

C from small-scale neighbourhoods, whereas the last
level ; = ! learns global dynamic features ⇡!

C observing large-scale neighbourhoods.

2.2.2 Feature Propagation (FP) phase. Once the DE phase has learned the features from all the
levels (⇡1

C , ...,⇡
!
C), the FP phase combines them into a single �nal feature (⇡�8=0;

C). Currently,
the most popular architecture for features combination is the original architecture proposed in
PointNet++[29], which is also found in most state-of-art methods without signi�cant di�erences.
We will refer to this architecture as state-of-art Classic-FP (depicted in the green side of Fig. 2). In
the Classic-FP the features combination is done by hierarchically propagating the features from the
higher levels to the lower levels using several FP modules [29]. At each module, the sub-sampled
features from the higher level are �rst interpolated to the same number of points as the lower level.
The interpolation is done by weighted aggregation of the features of the three closest 9 points in
the sub-sampled point cloud as such:

3̃;8,C =

Õ3
9=1 38BC8 9,C ⇥ 3;+18,CÕ3

9=1 38BC8 9,C
, 38BC8 9,C =

1
| |?;8,C � ?;+19,C | |2

(1)

where 3̃;8,C 2 ⇡̃C is interpolated features from the number of points at level ; + 1 to the number
of points at level ; . The interpolated high-level features are then concatenated with a skip-linked
connection to lower-level features at the same number of points. The concatenation is processed by
a point-based network that processes each point independently via shared weights ⇥;

�% as follows:

⇡;FP
C = ReLU (⇥;

�% {⇡;
C ; ⇡̃

;
C }) . (2)

The process is repeated in a hierarchical manner until the features from all the levels have been
combined into �nal features (⇡Final

C).

3 CHALLENGES AND LIMITATIONS
The hierarchical point-based RNN framework, presented in the previous section, su�ers several
limitations when facing the challenge of processing deformable objects such as human-body-like
sequences. In this paper, we explain why those challenges arise and how to overcome them. In the
following, we disentangle the challenges of current models as 8) challenges in processing/predicting
objects with deformable shapes (Section 3.1); 88) challenges in predicting complex motions (Sec-
tion 3.2). Taking advantage of the understanding built in this section, in Section 4 we introduce our
proposed method, built to overcome the main limitations identi�ed here.

3.1 Challenges in Processing Deformable Shapes
The main challenges encountered in processing and predicting objects with deformable shapes,
such as clothing, food, or human bodies are 8) having a semantically-meaningful point-to-point
correspondence (used to learn dynamic features); 88) avoiding shape distortion (which is highly
noticeable in 3D objects and therefore of high-negative impact on cloud prediction quality).
The challenge of establishing point-to-point correspondence is present in any point cloud

processing, but it is clearly exacerbated in the case of deformable 3D objects. The majority of
current works follow the same strategy as PointRNN [6] and assume that the points in the current
frame are matched with points in close proximity in the previous frame. This proximity is built in

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

Interpolated
featuresGlobal movement

Local movement

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Explaining Hierarchical Features in Dynamic Point
Cloud Processing

Pedro Gomes
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Silvia Rossi
Distributed Interactive System

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Laura Toni
Dept. Electronic & Electrical Eng.

University College of London
London, United Kingdom

Abstract—This paper aims at bringing some light and under-
standing to the field of deep learning for dynamic point cloud
processing. Specifically, we focus on the hierarchical features
learning aspect, with the ultimate goal of understanding which
features are learned at the different stages of the process and
what their meaning is. Last, we bring clarity on how hierarchical
components of the network affect the learned features and
their importance for a successful learning model. This study is
conducted for point cloud prediction tasks, useful for predicting
coding applications.

Index Terms—dynamic point clouds, hierarchical learning,
explanability, prediction

I. INTRODUCTION

One major open challenge in multimedia processing is
learning spatio-temporal features for dynamic point cloud (PC)
sequences. Being able to extract such information can be es-
sential for future compression algorithms. By learning spatio-
temporal features, a predictive motion-compensated coding
approach can reduce inter-frames redundancies from the com-
pressed bitstream [1]. Similarly, a PC predictor can be used
as learning-based decoder [2]. More at large, spatio-temporal
features are important also in high-level PC downstream tasks
such as action recognition, prediction and obstacle avoidance.
As of today, one of the most successful methodology is to
learn features via deep neural networks applied to each point
(or group of points) instead of the whole PC. This enables
the consumption of the raw PC data directly, without pre-
processing steps (e.g., voxelization) that could obscure natural
invariances of the data or introduce quantization errors. An
example is the pioneer PointNet [3] architecture, which learns
global PC features by aggregating local spatial features learned
by processing each point independently.

However, in such architecture, the local structures of the PC
are neglected. From convolutional neural networks (CNNs),
we know that leveraging the local structure is a key aspect of
the success of CNNs, in which local features are extracted
from small neighborhoods, grouped into larger units, and
processed to produce higher level features. This is the well-
known “hierarchical feature extraction”, deeply used in 2D
computer vision and processing tasks. In PCs, neighboring
points form a meaningful subset that captures key semantic
information about the 3D geometry; hence they should retain
even more information than the 2D counterpart. Because of

Fig. 1: Hierarchical learning of features. The network pro-
cesses a dynamic PC at progressively larger scales to learn
features. The learned features are represented as point color
using principal component analysis (PCA).

this intuition, PointNet++ [4] introduced a hierarchical archi-
tecture for PC processing, capturing features at increasingly
larger scales along a multi-resolution hierarchy. This concept
is illustrated in Figure 1, where a PC input is processed
at different scales (middle part of the figure) to extract
hierarchical features (right side of the figure) at different
levels. At the lower level (“Local” in the figure), each point
neighborhood covers a small and densely populated region,
extracting fine geometric structures. In contrast, at the higher
levels (“Global” in the figure), the network captures coarser
structures from larger neighborhoods. Given the increasing
importance of dynamic PC sequences in a wide spectrum of
applications from automation to virtual reality, several works
have extended the PointNet++ network by introducing spatio-
temporal neighborhoods in order to learn temporal features.
Most of these works adopt hierarchical architectures [5]–[9],
which can be considered the de-facto approach for dynamic
point cloud processing today.

The common intuition is that such hierarchical architecture
allows learning more descriptive features, pushing researchers
to develop even more hierarchical (and possibly complex)
models. However, why such models work and which features
do they learn in the framework of PC processing is still not
understood and usually overlooked in the literature. Initial
understanding has been provided for the PointNet model [3],
[10]. However, such efforts are limited to the original PointNet,
which does not have a hierarchical learning architecture and it
processes static PCs only, leaving a gap in the understanding
of current PC processing models. For example, which motion
or flow is learned at the different stages of the hierarchical
architecture is unknown. Also which key components of the
networks (multi-scaling, stacking of deep nets, etc.) lead to

| https://lasp-ucl.github.io

AGAR: Attention Graph-RNN for Adaptative Motion
Prediction of Point Clouds of Deformable Objects

37

10 P. Gomes, et al.

Fig. 5. Proposed AGAR prediction architecture composed of DE, FP and prediction phase.In the DE
phase, the architecture consists of an SS-GNN module followed by graph-RNN cells. The SS-GNN module
extracts spatial features from the point cloud which are then utilized by the graph-RNN cells to learn dynamic
features. In the FP phase, the state-of-art FP modules are replaced by a novel Adaptative feature combination
module able to dynamically combine hierarchical features according to the scene.

This means that only the global motion vector (pointing forward) would be su�cient to describe
the movement of the torso. However local features (hence local motions) cannot be neglected, since
this would lead to neglecting the local motions in parts with strong local movement such as the
foot. As a result, in Fig. 4 (b) local motion vectors ("1

C) clearly lose any motion interpretation and
becomes instead random vectors mainly used to compensate for the erroneous addition of multiple
motion vectors in this part of the body.

It is worth mentioning that while this understanding might appear straightforward, to the best
of our knowledge, this is the �rst work explaining PointRNN and similar hierarchical architectures
when processing 3D deformable objects, showing the limitation in adopting a �xed combination of
hierarchical features in the prediction phase. In the next section, we propose an architecture that
overcomes this limitation by introducing an attention-based mechanism in the prediction phase.

4 PROPOSED AGAR METHOD
To address the limitations identi�ed in the previous section, we now propose an improved ar-
chitecture for point cloud prediction, depicted in Fig. 5. The proposed architecture preserves the
state-of-art global framework composed of a DE, FP and prediction phase. However, we propose
to replace current state-of-art modules, with improved versions to leverage on the point cloud
semantic structure during the DE phase and to perform an adaptive combination of dynamic
features in the FP phase.

4.1 Addressing Limitation 1: Inclusion of structural relationships between points
To overcome the lack of geometrical prior with meaningful spatial/semantic information, we
propose an initial graph neural network denoted by Spatial-Structure GNN (SS-GNN) that processes
each frame to extract for each point spatial features that carry local topological information. From
the learned spatial features, we then construct a spatio-temporal graph that incorporates the point
structural/semantic information and uses that information to build representative neighbourhoods
of points. The spatio-temporal graph is processed by a proposed graph-RNN cells, that can extract
point cloud behaviour as dynamic features. Below we present each of the proposed modules in
detail.

4.1.1 Spatial-Structure GNN (SS-GNN). Given an input point cloud %C for each point 8 , the SS-GNN
learns a spatial feature B8,C describing the point’s local geometric structure. To learn these features
SS-GNN starts by constructing a coordinate graph G⇠

C = (%C , E⇠
C) by taking the points %C as vertices

and by building directed edges E⇠
C 2 R#⇥: between each point to its :-nearest neighbours based

on Euclidean distance. The SS-GNN is composed of three layers, each layer performs a graph
message-passing convolution [44]. At the ⌘-th layer, for a target point 8 , all its neighbouring points
9 2 E⇠

8 exchange a message along the edge connecting the two points. The message between points

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

P. Gomes, S. Rossi, L. Toni, “AGAR: Attention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable

Objects”, submitted ACM TOMM, Arxiv 2023

To learn spatial features
that carry local

topological information

spatio-temporal graph constructed to incorporate

the point structural/semantic information and

build representative neighbourhoods of points

Attention module to assign an attention value

to each level based on the learned features

Graph-based regularizer as

auxiliary loss

�pTLp
<latexit sha1_base64="g0fb3Hlv86GhIo2580jV61h8sqQ=">AAAB9XicdVBNTwIxEO3iF+IX6tFLIzHxtOm6CByJXjx4wASEBBbSLV1oaHc3bVdDNvwPLx40xqv/xZv/xrJgokZfMsnLezOZmefHnCmN0IeVW1ldW9/Ibxa2tnd294r7B7cqSiShLRLxSHZ8rChnIW1ppjntxJJi4XPa9ieXc799R6ViUdjU05h6Ao9CFjCCtZH6vREWAsO434TXMB4US8iuofNypQKRXUaOmxG36iJUgY6NMpTAEo1B8b03jEgiaKgJx0p1HRRrL8VSM8LprNBLFI0xmeAR7RoaYkGVl2ZXz+CJUYYwiKSpUMNM/T6RYqHUVPimU2A9Vr+9ufiX1010UPNSFsaJpiFZLAoSDnUE5xHAIZOUaD41BBPJzK2QjLHERJugCiaEr0/h/+T2zHZc270pl+oXyzjy4Agcg1PggCqogyvQAC1AgAQP4Ak8W/fWo/VivS5ac9Zy5hD8gPX2CZPikew=</latexit>

| https://lasp-ucl.github.io

Spatial-Structure GNN

38

10 P. Gomes, et al.

Fig. 5. Proposed AGAR prediction architecture composed of DE, FP and prediction phase.In the DE
phase, the architecture consists of an SS-GNN module followed by graph-RNN cells. The SS-GNN module
extracts spatial features from the point cloud which are then utilized by the graph-RNN cells to learn dynamic
features. In the FP phase, the state-of-art FP modules are replaced by a novel Adaptative feature combination
module able to dynamically combine hierarchical features according to the scene.

This means that only the global motion vector (pointing forward) would be su�cient to describe
the movement of the torso. However local features (hence local motions) cannot be neglected, since
this would lead to neglecting the local motions in parts with strong local movement such as the
foot. As a result, in Fig. 4 (b) local motion vectors ("1

C) clearly lose any motion interpretation and
becomes instead random vectors mainly used to compensate for the erroneous addition of multiple
motion vectors in this part of the body.

It is worth mentioning that while this understanding might appear straightforward, to the best
of our knowledge, this is the �rst work explaining PointRNN and similar hierarchical architectures
when processing 3D deformable objects, showing the limitation in adopting a �xed combination of
hierarchical features in the prediction phase. In the next section, we propose an architecture that
overcomes this limitation by introducing an attention-based mechanism in the prediction phase.

4 PROPOSED AGAR METHOD
To address the limitations identi�ed in the previous section, we now propose an improved ar-
chitecture for point cloud prediction, depicted in Fig. 5. The proposed architecture preserves the
state-of-art global framework composed of a DE, FP and prediction phase. However, we propose
to replace current state-of-art modules, with improved versions to leverage on the point cloud
semantic structure during the DE phase and to perform an adaptive combination of dynamic
features in the FP phase.

4.1 Addressing Limitation 1: Inclusion of structural relationships between points
To overcome the lack of geometrical prior with meaningful spatial/semantic information, we
propose an initial graph neural network denoted by Spatial-Structure GNN (SS-GNN) that processes
each frame to extract for each point spatial features that carry local topological information. From
the learned spatial features, we then construct a spatio-temporal graph that incorporates the point
structural/semantic information and uses that information to build representative neighbourhoods
of points. The spatio-temporal graph is processed by a proposed graph-RNN cells, that can extract
point cloud behaviour as dynamic features. Below we present each of the proposed modules in
detail.

4.1.1 Spatial-Structure GNN (SS-GNN). Given an input point cloud %C for each point 8 , the SS-GNN
learns a spatial feature B8,C describing the point’s local geometric structure. To learn these features
SS-GNN starts by constructing a coordinate graph G⇠

C = (%C , E⇠
C) by taking the points %C as vertices

and by building directed edges E⇠
C 2 R#⇥: between each point to its :-nearest neighbours based

on Euclidean distance. The SS-GNN is composed of three layers, each layer performs a graph
message-passing convolution [44]. At the ⌘-th layer, for a target point 8 , all its neighbouring points
9 2 E⇠

8 exchange a message along the edge connecting the two points. The message between points

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

P. Gomes, S. Rossi, L. Toni, “AGAR: Attention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable

Objects”, submitted ACM TOMM, Arxiv 2023

Chapter 3. Toward Point Cloud Prediction using Graph Networks

Figure 3.2: Example of learned features of a human body point cloud.

it iterative nature, the Graph-RNN cell takes into account the input and
also its own output (P c

t�1, F
c
t�1, S

c
t�1) calculated at the previous interaction

(t � 1). The cell extracts the inner state Sc
t = [sc1,t, s

c
2,t, . . . , s

c
n,t] 2 Rn⇥ds ,

with sci,t being the state of point pci,t, representative of the point dynamic

behavior. The new state is added to the unchanged coordinates P c�1
t and

features F c�1
t and outputted as (P c

t , F
c
t , S

c
t). Similarly to [35], we consider

three sequential Graph-RNN cells.
The Graph-RNN operation is the depicted in Fig. 3.1 (dashed box). As

first step, we compute a spatio-temporal feature graph GF
t , in which each

point is connected to k nearest neighbors based on the feature distance.
Specifically, for each input point pc�1

i,t , we compute the pairwise distance

between f c�1
i,t and features of other points f c�1

j,t (features input) and f c
j,t�1

(features from points in the past point cloud). We force our implementation
to take the equal number of points k from P c�1

t as from P c
t�1 to avoid a

one-side selection.
In details, this is a spatio-temporal graph since each point is connected

to points in the same point cloud (spatial relationship) and points in the past
point cloud (temporal relationship). Once the features graph is constructed,
we learn edge features similarly to the GNN module. For the edge (i, j),
we concatenate the state of point i (si), the state of point j (sj), and the
coordinate, the feature and the time displacement (�pi,j ,�fi,j�ti,j) between
the two points. The concatenation is then processed by a shared MLP (hS).
All edge features are then max pooled to a single representation into the
update state si,t. Formally,

eci,j = hcS(s
c�1
i,t ; sc

0
j,t0 ;�pij ;�fij ;�tij) (3.3)

sci,t =
M

j:(i,j)2EF

�
eci,j

(3.4)

When learning output states Sc
t , the Graph-RNN cell considers the states

in the previous frame Sc
t�1. This means that the network learns point move-

ments taking into consideration the previous movements of points, allowing
the cell to retain temporal information. The states act as a memory retain-

34

AGAR: A�ention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable Objects 11

Fig. 6. Spatio-Temporal graph⌧BC , with some temporal edges colored in red; Dashed box depicts the di�erence
between building the ⌧BC using spatial features or using point coordinates.

is obtained by processing the concatenation between the target point spatial feature at the previous
layer B⌘�18,C ; the target point coordinates ?8,C ; the geometry displacement between target points 8 and
it neighbours 9 (�?8 9). A symmetric function is then applied to aggregate all the messages into an
updated feature for the target node. More formally, the message between two nodes (<⌘

88,C) and the
output spatial features (B⌘8,C) are obtained as follows:

<⌘
8 9,C = ⇥⌘

((B⌘�18,C ;?;8,C ;�?8 9) (4)

B⌘8,C =

9 2E⇠

8

�
<⌘+1

8 9,C

(5)

where ⇥⌘
(is a set of learnable parameters at layer ⌘ abd ’;’ identi�es the concatenation operation.

The
…

represents an element-wise max pooling function that acts as an activation function by
introducing non-linearity. It is important to note that the above operation does not involve spatio-
temporal aggregation. Instead, the spatial features are learned from a single point cloud at a single
timestep.

4.1.2 Graph-RNN. Each graph-RNN cell, at level ; , takes as input the point coordinates, spatial and
dynamic features (%;C (;C ⇡;

C) and learns updated dynamic features⇡;+1
C describing the point’s dynamic

behaviour. To this end, the graph-RNN cell builds a spatio-temporal graph GST, ;
C = (%;C 0, EST

C)
between the points %;C and %;C�1. Unlike the coordinate graph which is built on geometric distances,
the spatio-temporal graph is built based on the spatial features distance. Speci�cally, for each point 8
at time C , we calculate the distance between the point spatial feature B8,C and the spatial feature from
other points in the present frame B 9,C and in the past frame B 9,C�1. Each point 8 is connected to its
:-closest points in present time C and its :-closest in past time C � 1. By connecting points that share
a common local structure, we are able to establish correspondence between points that despite
not being close in the Euclidean space, they share semantic similarities and therefore they will
most likely share motion vectors. Fig. 6 depicts an example of a spatio-temporal graph constructed
between two frames in a fast-moving sequence of a person running (some edges are hidden for
image clarity). The dashed boxes in Fig. 6 show the edges build for the points in the foot when
using spatial feature distance –our approach– (upper box, in red) and the edges built if we had
used coordinate distance –state-of-art approach- (lower box, in blue). The edges built on spatial
feature similarity (in red) can correctly match points across time while edges based on geometry
proximity would lead to incorrect grouping. As a result, the network learns dynamic features from
neighbourhoods of points that share similar semantic/structural properties.
Similarly to the SS-GNN, the graph-RNN extracts dynamic features by performing a message-

passing convolution between a point and its neighbourhoods in the spatio-temporal graph. For each
target point, we learn a message for each edge by processing the concatenation of the target point
dynamic feature (3;8,C); the neighbour point dynamic feature (3;9,C 0) where C 0 can be either C or C � 1;

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

• K-NN graph built based on geometry

(coordinates)

• SS-GNN composed of 3 layers, each

performing a graph message-passing

convolution

AGAR: A�ention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable Objects 11

Fig. 6. Spatio-Temporal graph⌧BC , with some temporal edges colored in red; Dashed box depicts the di�erence
between building the ⌧BC using spatial features or using point coordinates.

is obtained by processing the concatenation between the target point spatial feature at the previous
layer B⌘�18,C ; the target point coordinates ?8,C ; the geometry displacement between target points 8 and
it neighbours 9 (�?8 9). A symmetric function is then applied to aggregate all the messages into an
updated feature for the target node. More formally, the message between two nodes (<⌘

88,C) and the
output spatial features (B⌘8,C) are obtained as follows:

<⌘
8 9,C = ⇥⌘

((B⌘�18,C ;?;8,C ;�?8 9) (4)

B⌘8,C =

9 2E⇠

8

�
<⌘+1

8 9,C

(5)

where ⇥⌘
(is a set of learnable parameters at layer ⌘ abd ’;’ identi�es the concatenation operation.

The
…

represents an element-wise max pooling function that acts as an activation function by
introducing non-linearity. It is important to note that the above operation does not involve spatio-
temporal aggregation. Instead, the spatial features are learned from a single point cloud at a single
timestep.

4.1.2 Graph-RNN. Each graph-RNN cell, at level ; , takes as input the point coordinates, spatial and
dynamic features (%;C (;C ⇡;

C) and learns updated dynamic features⇡;+1
C describing the point’s dynamic

behaviour. To this end, the graph-RNN cell builds a spatio-temporal graph GST, ;
C = (%;C 0, EST

C)
between the points %;C and %;C�1. Unlike the coordinate graph which is built on geometric distances,
the spatio-temporal graph is built based on the spatial features distance. Speci�cally, for each point 8
at time C , we calculate the distance between the point spatial feature B8,C and the spatial feature from
other points in the present frame B 9,C and in the past frame B 9,C�1. Each point 8 is connected to its
:-closest points in present time C and its :-closest in past time C � 1. By connecting points that share
a common local structure, we are able to establish correspondence between points that despite
not being close in the Euclidean space, they share semantic similarities and therefore they will
most likely share motion vectors. Fig. 6 depicts an example of a spatio-temporal graph constructed
between two frames in a fast-moving sequence of a person running (some edges are hidden for
image clarity). The dashed boxes in Fig. 6 show the edges build for the points in the foot when
using spatial feature distance –our approach– (upper box, in red) and the edges built if we had
used coordinate distance –state-of-art approach- (lower box, in blue). The edges built on spatial
feature similarity (in red) can correctly match points across time while edges based on geometry
proximity would lead to incorrect grouping. As a result, the network learns dynamic features from
neighbourhoods of points that share similar semantic/structural properties.
Similarly to the SS-GNN, the graph-RNN extracts dynamic features by performing a message-

passing convolution between a point and its neighbourhoods in the spatio-temporal graph. For each
target point, we learn a message for each edge by processing the concatenation of the target point
dynamic feature (3;8,C); the neighbour point dynamic feature (3;9,C 0) where C 0 can be either C or C � 1;

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

| https://lasp-ucl.github.io

Chapter 2. Background

Figure 2.9: PointRNN cell operation.

• Failure at extracting temporal correlation.
Since grouping points only based on coordinates might connect two
points close in space but not belonging to the same segment, hence
not sharing the same motion.

• Loss of structure during point cloud prediction.

To address these shortcomings, we will take a graph-based approach. The
next section introduces graph neural networks.

2.4.3 Graph-based methods for point clouds

As explain in the previous section the biggest shortcoming of point-based
geometric deep learning on point clouds is its inability to model the rela-
tionship amongst points. Graph representation appear as a solution to this
drawback. Graph representations allow to model relations between points
by taking the points as vertices the use edges for the relations. This makes
graphs the ideal representation for point clouds.

Following this direction, some recent works have integrated graph signal
techniques for point cloud processing. Thanou et al. in [7] was one of the
first works to propose a graph-based representation of point clouds. The
authors construct the graph based on the 3D coordinates (Figure 2.10),
using knn for each point. While graph-based deep learning was not used,
the work exploits the graph structure to interpolate a dense motion field by
solving a graph-based regularization problem.

Bronstein et al [36] proposed a dynamic graph convolutional neural net-
work (DGCNN) for point cloud classification. Instead of working on indi-
vidual points like PointNet, DGCNN exploits local geometric structures by

27

Graph Based RNN

Spatio-
temporal

graph

The graph-RNN extracts dynamic features by performing a message-passing
convolution between a point and its neighbourhoods in the spatio-temporal graph

12 P. Gomes, et al.

Fig. 7. Adaptative Feature Combination Module. Given a point cloud prediction framework with three
hierarchical levels, the module takes as input dynamic features ⇡1

C ,⇡
2
C ,⇡

3
C and outputs a single final dynamic

feature ⇡�8=0; .

the coordinates di�erence (�?8 9), spatial features di�erence (�B8 9); temporal di�erent (�C8 9) between
the target and neighbour point. All the messages are aggregated into a single representation to
update the target point dynamic features 3;+18,C . The operation can be formalized as:

<;
8 9,C = ⇥;

⇡ (3;8,C ; 3;9,C 0 ; �?8 9 ; �B8 9 ; ;�C8 9) (6)

3;+18,C =

9 2EST

8

�
<;

8 9,C

(7)

The learned spatial features are used not only to connect points with similar spatial characteristics
in both the present and past frame but are also directly incorporated in the graph-RNN convolution.
As a result, the graph-RNN learns a point dynamic behaviour taking into account structural relations
to neighbourhood points. This inclusion of point spatial features in the graph-RNN cell convolution,
allows the network to learn more representative dynamic features and helps to preserve the
predicted point cloud shape.

4.2 Addressing Limitation 2: Adaptative Feature Combination
We now address the current framework limitation to generate complex motions caused by the �xed
combination of dynamic features in the FP phase. To overcome the issue, we propose to replace the
FP modules with an attention-based module denoted Adaptative feature combination represented in
detail in Fig.7. Instead of using a �xed combination, the proposed module dynamically assigns an
attention value to each level based on the learned features. This attention value determines the
amount of in�uence each level will have on the predicted motion of the point.
In details, given an architecture with L hierarchical levels (! = 3 in the example in Fig.7), the

proposedAdaptative Feature combinationmodule takes as input the dynamic features (⇡1
C ,⇡

2
C , ...,⇡

!
C)

learned in the DE phase and combines them into a single �nal dynamic feature (⇡Final
C). However,

we recall that each RNN cell is preceded by a downsampling module, hence each feature needs
to be up-sampled before being combined. To do this, the proposed module �rst interpolates the
dynamic features to the same number of points as the �rst level and processes each independently
through a re�nement layer ⇥;

' , to ensure the features are on a similar scale, as follows:
k (3;

8̃,C
) = f

⇣
⇥;
' {3;

8̃,C
}
⌘

(8)
where 3;

8̃,C
are the interpolated features to original number of points, k (3;

8̃,C
) are the outputted

re�ned features and f is the activation function. To learn scalar attention values U;8,C , the network
concatenates the re�ned features from all levels and processes them through learnable parameters
⇥;
U as follows:

U;8,C = f
⇣
⇥;
U {k (318,C);k (328̃,C);k (3

3
8̃,C
)}
⌘

(9)
The re�ned dynamic featuresk (3;8,C) are then multiplied by their respective attention value. Hence,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

Chapter 5. Future Lines of Work

Figure 5.3: Graph-RNN with a message-passing convolution.

Figure 5.4: Graph-RNN with simple message weighted convolution.

Figure 5.5: Graph-RNN with weighted convolution.

geometry. While the graph-regulaizer is already implemented, there are still
open questions regarding the optimal amount of smoothness that should be
imposed.

5.1.2 Improve Graph Convolution

The Graph-RNN proposed in the previous chapter employs a message-passing
convolution. The message-passing convolution is depicted in Figure 5.3.
This was a good first approach since the GNN message passing is a generic
graph-based convolution able to easily generalize di↵erent types of graph
data. It o↵ers early promising results without an excessive optimization ef-
fort. However, message-passing is a very memory and computational expen-
sive convolution, since we have to store and learn an edge feature (message)
for each edge. As we have now gained a deeper understanding of GNNs, we
are capable of developing a more lightweight GNN. To this end we propose
to design more memory e�cient graph convolution tailored-made for our
dynamic point cloud data.

The edges of the spatio-temporal graph are constructed using feature

45

39

| https://lasp-ucl.github.io

Laplacian-Regularizer as Auxiliary Loss

40

10 P. Gomes, et al.

Fig. 5. Proposed AGAR prediction architecture composed of DE, FP and prediction phase.In the DE
phase, the architecture consists of an SS-GNN module followed by graph-RNN cells. The SS-GNN module
extracts spatial features from the point cloud which are then utilized by the graph-RNN cells to learn dynamic
features. In the FP phase, the state-of-art FP modules are replaced by a novel Adaptative feature combination
module able to dynamically combine hierarchical features according to the scene.

This means that only the global motion vector (pointing forward) would be su�cient to describe
the movement of the torso. However local features (hence local motions) cannot be neglected, since
this would lead to neglecting the local motions in parts with strong local movement such as the
foot. As a result, in Fig. 4 (b) local motion vectors ("1

C) clearly lose any motion interpretation and
becomes instead random vectors mainly used to compensate for the erroneous addition of multiple
motion vectors in this part of the body.

It is worth mentioning that while this understanding might appear straightforward, to the best
of our knowledge, this is the �rst work explaining PointRNN and similar hierarchical architectures
when processing 3D deformable objects, showing the limitation in adopting a �xed combination of
hierarchical features in the prediction phase. In the next section, we propose an architecture that
overcomes this limitation by introducing an attention-based mechanism in the prediction phase.

4 PROPOSED AGAR METHOD
To address the limitations identi�ed in the previous section, we now propose an improved ar-
chitecture for point cloud prediction, depicted in Fig. 5. The proposed architecture preserves the
state-of-art global framework composed of a DE, FP and prediction phase. However, we propose
to replace current state-of-art modules, with improved versions to leverage on the point cloud
semantic structure during the DE phase and to perform an adaptive combination of dynamic
features in the FP phase.

4.1 Addressing Limitation 1: Inclusion of structural relationships between points
To overcome the lack of geometrical prior with meaningful spatial/semantic information, we
propose an initial graph neural network denoted by Spatial-Structure GNN (SS-GNN) that processes
each frame to extract for each point spatial features that carry local topological information. From
the learned spatial features, we then construct a spatio-temporal graph that incorporates the point
structural/semantic information and uses that information to build representative neighbourhoods
of points. The spatio-temporal graph is processed by a proposed graph-RNN cells, that can extract
point cloud behaviour as dynamic features. Below we present each of the proposed modules in
detail.

4.1.1 Spatial-Structure GNN (SS-GNN). Given an input point cloud %C for each point 8 , the SS-GNN
learns a spatial feature B8,C describing the point’s local geometric structure. To learn these features
SS-GNN starts by constructing a coordinate graph G⇠

C = (%C , E⇠
C) by taking the points %C as vertices

and by building directed edges E⇠
C 2 R#⇥: between each point to its :-nearest neighbours based

on Euclidean distance. The SS-GNN is composed of three layers, each layer performs a graph
message-passing convolution [44]. At the ⌘-th layer, for a target point 8 , all its neighbouring points
9 2 E⇠

8 exchange a message along the edge connecting the two points. The message between points

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

P. Gomes, S. Rossi, L. Toni, “AGAR: Attention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable

Objects”, submitted ACM TOMM, Arxiv 2023

graph denoising

16 P. Gomes, et al.

the Mixamo Human Bodies dataset, 32 for the MNIST dataset, 4 for the Argoverse dataset, and 32
for MSRAction3D. For all models, the gradients are clipped in the range [5, 5].

5.4 Training and Metrics
The AGAR architecture has multiple end-to-end parameters, trained in a self-supervised fashion
by comparing the predicted point cloud %̂C+1 with the target point cloud %C+1. Unlike supervised
methods [15, 19, 39, 43], which require the ground-truth motion �ow to train the network, in
a self-supervised setting the ground-truth data can be obtained from the input data itself. This
technique allows us to train on a dataset of deformable dynamic point clouds, such as human bodies
dataset [5, 14, 30], where annotated ground-truth motion vectors are not available.

5.4.1 TrainingMetrics. Tomeasure the di�erence between the predicted point cloud and the ground-
truth point cloud during training, we employ the commonly used chamfer distance (CD) [13] and
earth’s moving distance (EMD) [2]. These metrics are de�ned as the following:
Chamfer distance (CD) : The CD measures the distance between each point in the predicted point
cloud and its closest target point in the reference point cloud, and vice-versa.

3⇠⇡ (%, %̂) =
1
=

’
?2%

min
?̂2%̂

| |? � ?̂ | |2 + 1
=

’
?2%̂

min
?2%

| |?̂ � ? | |2 (12)

Earth’s moving distance (EMD): The EMD solves an optimization problem, by �nding the optimal
point-wise bijection mapping between two point clouds \ : % �! %̂ . The EMD distance is then given
by the distance of the points at both ends of this mapping, as follows:

3⇢"⇡ (%, %̂) = min
\ :%�!%̂

’
?2%

| |? � \ (?) | |2. (13)

Although the EMD and CD metrics are commonly used in point cloud analysis, they may not
always provide an accurate measure of similarity. The CD only considers the nearest neighbour
of a point and does not take into account the global distribution of points. On the other hand,
EMD tries to �nd a unique mapping between two point clouds. However, in most cases a unique
mapping is realistically impossible, resulting in a measurement that is rarely correct for all points.
Since CD and EMD measure di�erent notions of similarity with di�erent shortcomings, we use a
combination of both metrics as the loss function in order to make the loss function more robust.

5.4.2 Evaluation Metrics. To evaluate our model we used the CD and EMD metrics also used
for training. However since CD and EMD measure the similarity between two point clouds by
averaging the distance across all points, they tend to �atten their distance scores towards zero
values. This is because in a point cloud, the majority of points are perfectly predicted (either no
motion or little motion), and most of the high prediction errors are concentrated in small areas
of high or complex motion. Therefore to better evaluate the model’s ability to predict complex
motions, besides the CD and EMD we also consider the following additional evaluation metric,
de�ned as:
Chamfer distance of the top %5 worst points (CD Top %5): This metric returns the average CD distance
of the 5% of points with the worst predictions (i.e., points with the farthest distance to their closest
point). We found that this CD Top %5 focuses on the regions where the body performs complex
motions and provides the best correlation with the visual quality. To the best of our knowledge, we
are the �rst to work to present results using CD top 5% metric.

6 EXPERIMENTAL RESULTS
In this section, we present and discuss the results of our proposed AGAR method, described in
Section 4 for each task and dataset. We begin by presenting and discussing the results point cloud

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

16 P. Gomes, et al.

the Mixamo Human Bodies dataset, 32 for the MNIST dataset, 4 for the Argoverse dataset, and 32
for MSRAction3D. For all models, the gradients are clipped in the range [5, 5].

5.4 Training and Metrics
The AGAR architecture has multiple end-to-end parameters, trained in a self-supervised fashion
by comparing the predicted point cloud %̂C+1 with the target point cloud %C+1. Unlike supervised
methods [15, 19, 39, 43], which require the ground-truth motion �ow to train the network, in
a self-supervised setting the ground-truth data can be obtained from the input data itself. This
technique allows us to train on a dataset of deformable dynamic point clouds, such as human bodies
dataset [5, 14, 30], where annotated ground-truth motion vectors are not available.

5.4.1 TrainingMetrics. Tomeasure the di�erence between the predicted point cloud and the ground-
truth point cloud during training, we employ the commonly used chamfer distance (CD) [13] and
earth’s moving distance (EMD) [2]. These metrics are de�ned as the following:
Chamfer distance (CD) : The CD measures the distance between each point in the predicted point
cloud and its closest target point in the reference point cloud, and vice-versa.

3⇠⇡ (%, %̂) =
1
=

’
?2%

min
?̂2%̂

| |? � ?̂ | |2 + 1
=

’
?2%̂

min
?2%

| |?̂ � ? | |2 (12)

Earth’s moving distance (EMD): The EMD solves an optimization problem, by �nding the optimal
point-wise bijection mapping between two point clouds \ : % �! %̂ . The EMD distance is then given
by the distance of the points at both ends of this mapping, as follows:

3⇢"⇡ (%, %̂) = min
\ :%�!%̂

’
?2%

| |? � \ (?) | |2. (13)

Although the EMD and CD metrics are commonly used in point cloud analysis, they may not
always provide an accurate measure of similarity. The CD only considers the nearest neighbour
of a point and does not take into account the global distribution of points. On the other hand,
EMD tries to �nd a unique mapping between two point clouds. However, in most cases a unique
mapping is realistically impossible, resulting in a measurement that is rarely correct for all points.
Since CD and EMD measure di�erent notions of similarity with di�erent shortcomings, we use a
combination of both metrics as the loss function in order to make the loss function more robust.

5.4.2 Evaluation Metrics. To evaluate our model we used the CD and EMD metrics also used
for training. However since CD and EMD measure the similarity between two point clouds by
averaging the distance across all points, they tend to �atten their distance scores towards zero
values. This is because in a point cloud, the majority of points are perfectly predicted (either no
motion or little motion), and most of the high prediction errors are concentrated in small areas
of high or complex motion. Therefore to better evaluate the model’s ability to predict complex
motions, besides the CD and EMD we also consider the following additional evaluation metric,
de�ned as:
Chamfer distance of the top %5 worst points (CD Top %5): This metric returns the average CD distance
of the 5% of points with the worst predictions (i.e., points with the farthest distance to their closest
point). We found that this CD Top %5 focuses on the regions where the body performs complex
motions and provides the best correlation with the visual quality. To the best of our knowledge, we
are the �rst to work to present results using CD top 5% metric.

6 EXPERIMENTAL RESULTS
In this section, we present and discuss the results of our proposed AGAR method, described in
Section 4 for each task and dataset. We begin by presenting and discussing the results point cloud

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

Training Loss + Auxiliary Loss

�pTLp
<latexit sha1_base64="g0fb3Hlv86GhIo2580jV61h8sqQ=">AAAB9XicdVBNTwIxEO3iF+IX6tFLIzHxtOm6CByJXjx4wASEBBbSLV1oaHc3bVdDNvwPLx40xqv/xZv/xrJgokZfMsnLezOZmefHnCmN0IeVW1ldW9/Ibxa2tnd294r7B7cqSiShLRLxSHZ8rChnIW1ppjntxJJi4XPa9ieXc799R6ViUdjU05h6Ao9CFjCCtZH6vREWAsO434TXMB4US8iuofNypQKRXUaOmxG36iJUgY6NMpTAEo1B8b03jEgiaKgJx0p1HRRrL8VSM8LprNBLFI0xmeAR7RoaYkGVl2ZXz+CJUYYwiKSpUMNM/T6RYqHUVPimU2A9Vr+9ufiX1010UPNSFsaJpiFZLAoSDnUE5xHAIZOUaD41BBPJzK2QjLHERJugCiaEr0/h/+T2zHZc270pl+oXyzjy4Agcg1PggCqogyvQAC1AgAQP4Ak8W/fWo/VivS5ac9Zy5hD8gPX2CZPikew=</latexit>

| https://lasp-ucl.github.io41

Attention Mechanism12 P. Gomes, et al.

Fig. 7. Adaptative Feature Combination Module. Given a point cloud prediction framework with three
hierarchical levels, the module takes as input dynamic features ⇡1

C ,⇡
2
C ,⇡

3
C and outputs a single final dynamic

feature ⇡�8=0; .

the coordinates di�erence (�?8 9), spatial features di�erence (�B8 9); temporal di�erent (�C8 9) between
the target and neighbour point. All the messages are aggregated into a single representation to
update the target point dynamic features 3;+18,C . The operation can be formalized as:

<;
8 9,C = ⇥;

⇡ (3;8,C ; 3;9,C 0 ; �?8 9 ; �B8 9 ; ;�C8 9) (6)

3;+18,C =

9 2EST

8

�
<;

8 9,C

(7)

The learned spatial features are used not only to connect points with similar spatial characteristics
in both the present and past frame but are also directly incorporated in the graph-RNN convolution.
As a result, the graph-RNN learns a point dynamic behaviour taking into account structural relations
to neighbourhood points. This inclusion of point spatial features in the graph-RNN cell convolution,
allows the network to learn more representative dynamic features and helps to preserve the
predicted point cloud shape.

4.2 Addressing Limitation 2: Adaptative Feature Combination
We now address the current framework limitation to generate complex motions caused by the �xed
combination of dynamic features in the FP phase. To overcome the issue, we propose to replace the
FP modules with an attention-based module denoted Adaptative feature combination represented in
detail in Fig.7. Instead of using a �xed combination, the proposed module dynamically assigns an
attention value to each level based on the learned features. This attention value determines the
amount of in�uence each level will have on the predicted motion of the point.
In details, given an architecture with L hierarchical levels (! = 3 in the example in Fig.7), the

proposedAdaptative Feature combinationmodule takes as input the dynamic features (⇡1
C ,⇡

2
C , ...,⇡

!
C)

learned in the DE phase and combines them into a single �nal dynamic feature (⇡Final
C). However,

we recall that each RNN cell is preceded by a downsampling module, hence each feature needs
to be up-sampled before being combined. To do this, the proposed module �rst interpolates the
dynamic features to the same number of points as the �rst level and processes each independently
through a re�nement layer ⇥;

' , to ensure the features are on a similar scale, as follows:
k (3;

8̃,C
) = f

⇣
⇥;
' {3;

8̃,C
}
⌘

(8)
where 3;

8̃,C
are the interpolated features to original number of points, k (3;

8̃,C
) are the outputted

re�ned features and f is the activation function. To learn scalar attention values U;8,C , the network
concatenates the re�ned features from all levels and processes them through learnable parameters
⇥;
U as follows:

U;8,C = f
⇣
⇥;
U {k (318,C);k (328̃,C);k (3

3
8̃,C
)}
⌘

(9)
The re�ned dynamic featuresk (3;8,C) are then multiplied by their respective attention value. Hence,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

12 P. Gomes, et al.

Fig. 7. Adaptative Feature Combination Module. Given a point cloud prediction framework with three
hierarchical levels, the module takes as input dynamic features ⇡1

C ,⇡
2
C ,⇡

3
C and outputs a single final dynamic

feature ⇡�8=0; .

the coordinates di�erence (�?8 9), spatial features di�erence (�B8 9); temporal di�erent (�C8 9) between
the target and neighbour point. All the messages are aggregated into a single representation to
update the target point dynamic features 3;+18,C . The operation can be formalized as:

<;
8 9,C = ⇥;

⇡ (3;8,C ; 3;9,C 0 ; �?8 9 ; �B8 9 ; ;�C8 9) (6)

3;+18,C =

9 2EST

8

�
<;

8 9,C

(7)

The learned spatial features are used not only to connect points with similar spatial characteristics
in both the present and past frame but are also directly incorporated in the graph-RNN convolution.
As a result, the graph-RNN learns a point dynamic behaviour taking into account structural relations
to neighbourhood points. This inclusion of point spatial features in the graph-RNN cell convolution,
allows the network to learn more representative dynamic features and helps to preserve the
predicted point cloud shape.

4.2 Addressing Limitation 2: Adaptative Feature Combination
We now address the current framework limitation to generate complex motions caused by the �xed
combination of dynamic features in the FP phase. To overcome the issue, we propose to replace the
FP modules with an attention-based module denoted Adaptative feature combination represented in
detail in Fig.7. Instead of using a �xed combination, the proposed module dynamically assigns an
attention value to each level based on the learned features. This attention value determines the
amount of in�uence each level will have on the predicted motion of the point.
In details, given an architecture with L hierarchical levels (! = 3 in the example in Fig.7), the

proposedAdaptative Feature combinationmodule takes as input the dynamic features (⇡1
C ,⇡

2
C , ...,⇡

!
C)

learned in the DE phase and combines them into a single �nal dynamic feature (⇡Final
C). However,

we recall that each RNN cell is preceded by a downsampling module, hence each feature needs
to be up-sampled before being combined. To do this, the proposed module �rst interpolates the
dynamic features to the same number of points as the �rst level and processes each independently
through a re�nement layer ⇥;

' , to ensure the features are on a similar scale, as follows:
k (3;

8̃,C
) = f

⇣
⇥;
' {3;

8̃,C
}
⌘

(8)
where 3;

8̃,C
are the interpolated features to original number of points, k (3;

8̃,C
) are the outputted

re�ned features and f is the activation function. To learn scalar attention values U;8,C , the network
concatenates the re�ned features from all levels and processes them through learnable parameters
⇥;
U as follows:

U;8,C = f
⇣
⇥;
U {k (318,C);k (328̃,C);k (3

3
8̃,C
)}
⌘

(9)
The re�ned dynamic featuresk (3;8,C) are then multiplied by their respective attention value. Hence,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

AGAR: A�ention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable Objects 13

(a) Man-Running. (b)Woman-Dancing.
Fig. 8. Adaptative Features Combination operation. Example of how the proposed module adaptively com-
bines local and global motion for di�erent points, and comparison with motion obtained with Classic-FP.

the U value re�ects the in�uence that the learned feature has on the predicted motion, allowing the
network to adjust the contribution of each level to the predicted motion. Namely,

 (3;8,C) = k (3;8,C) ⇥ U;
8̃,C

(10)

Lastly, the dynamic features post-attention module (3;8,C) are combined by a single learnable layer
(⇥�⇠) into the �nal dynamic features 3Final8,C 2 ⇡Final

C .

3�8=0;8,C = f
⇣
⇥�⇠ { (318,C); (328̃,C); (3

3
8̃,C
)}
⌘

(11)

4.2.1 Explainablity of the Adaptative feature combination module. A key bene�t of the Adaptative
feature combination module is that its underlying mechanism can be visualized and explained. This
can be seen in Fig. 8, which illustrates how the proposed module combines dynamic features to
produce motion vectors given two point cloud sequences (Man-Running and Woman-Dancing). For
each sequence, Fig. 8 depicts: the PCA of the dynamic features learned at the DE phase; the learned
attention values per point; the individual motion vectors2 produced at each level in the proposed
Adaptative architecture and in the Classic-FP architecture (previously presented in Section 2.2 and
Fig.2).
In the Man-Running sequence depicted in Fig. 8 (a), at the �rst level the network assigns high

attention values (U1
C) to the arms and low attention values to the points in the rest of the body. As a

result, the predicted motion of the points in the arms is heavily in�uenced by local motions, while
in the rest of the body, the local motions have a very small in�uence on prediction. The network
exhibits similar selective behaviour at the second level, assigning higher attention to the points in
the left foot, increasing the in�uence of the dynamic features ⇡2

C have on the motion of the foot. In
the third and �nal level, the network learned non-zero attention values U3

C for the majority of the
body. As a result, in the Man-Running sequence, the global motion is the primary contributor to
the predicted motion of the points, with the exception of the arm and the foot regions where the
prediction is given by a motion combination from multiple levels.
Similar considerations can be derived from the second example Woman-Dancing, in which

the learned global motions are an accurate descriptor for the majority of the points, except for
2For the sake of image clarity the motion vectors were uniformly sampled

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

AGAR: A�ention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable Objects 13

(a) Man-Running. (b)Woman-Dancing.
Fig. 8. Adaptative Features Combination operation. Example of how the proposed module adaptively com-
bines local and global motion for di�erent points, and comparison with motion obtained with Classic-FP.

the U value re�ects the in�uence that the learned feature has on the predicted motion, allowing the
network to adjust the contribution of each level to the predicted motion. Namely,

 (3;8,C) = k (3;8,C) ⇥ U;
8̃,C

(10)

Lastly, the dynamic features post-attention module (3;8,C) are combined by a single learnable layer
(⇥�⇠) into the �nal dynamic features 3Final8,C 2 ⇡Final

C .

3�8=0;8,C = f
⇣
⇥�⇠ { (318,C); (328̃,C); (3

3
8̃,C
)}
⌘

(11)

4.2.1 Explainablity of the Adaptative feature combination module. A key bene�t of the Adaptative
feature combination module is that its underlying mechanism can be visualized and explained. This
can be seen in Fig. 8, which illustrates how the proposed module combines dynamic features to
produce motion vectors given two point cloud sequences (Man-Running and Woman-Dancing). For
each sequence, Fig. 8 depicts: the PCA of the dynamic features learned at the DE phase; the learned
attention values per point; the individual motion vectors2 produced at each level in the proposed
Adaptative architecture and in the Classic-FP architecture (previously presented in Section 2.2 and
Fig.2).
In the Man-Running sequence depicted in Fig. 8 (a), at the �rst level the network assigns high

attention values (U1
C) to the arms and low attention values to the points in the rest of the body. As a

result, the predicted motion of the points in the arms is heavily in�uenced by local motions, while
in the rest of the body, the local motions have a very small in�uence on prediction. The network
exhibits similar selective behaviour at the second level, assigning higher attention to the points in
the left foot, increasing the in�uence of the dynamic features ⇡2

C have on the motion of the foot. In
the third and �nal level, the network learned non-zero attention values U3

C for the majority of the
body. As a result, in the Man-Running sequence, the global motion is the primary contributor to
the predicted motion of the points, with the exception of the arm and the foot regions where the
prediction is given by a motion combination from multiple levels.
Similar considerations can be derived from the second example Woman-Dancing, in which

the learned global motions are an accurate descriptor for the majority of the points, except for
2For the sake of image clarity the motion vectors were uniformly sampled

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

| https://lasp-ucl.github.io42

AGAR: A�ention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable Objects 13

(a) Man-Running. (b)Woman-Dancing.
Fig. 8. Adaptative Features Combination operation. Example of how the proposed module adaptively com-
bines local and global motion for di�erent points, and comparison with motion obtained with Classic-FP.

the U value re�ects the in�uence that the learned feature has on the predicted motion, allowing the
network to adjust the contribution of each level to the predicted motion. Namely,

 (3;8,C) = k (3;8,C) ⇥ U;
8̃,C

(10)

Lastly, the dynamic features post-attention module (3;8,C) are combined by a single learnable layer
(⇥�⇠) into the �nal dynamic features 3Final8,C 2 ⇡Final

C .

3�8=0;8,C = f
⇣
⇥�⇠ { (318,C); (328̃,C); (3

3
8̃,C
)}
⌘

(11)

4.2.1 Explainablity of the Adaptative feature combination module. A key bene�t of the Adaptative
feature combination module is that its underlying mechanism can be visualized and explained. This
can be seen in Fig. 8, which illustrates how the proposed module combines dynamic features to
produce motion vectors given two point cloud sequences (Man-Running and Woman-Dancing). For
each sequence, Fig. 8 depicts: the PCA of the dynamic features learned at the DE phase; the learned
attention values per point; the individual motion vectors2 produced at each level in the proposed
Adaptative architecture and in the Classic-FP architecture (previously presented in Section 2.2 and
Fig.2).
In the Man-Running sequence depicted in Fig. 8 (a), at the �rst level the network assigns high

attention values (U1
C) to the arms and low attention values to the points in the rest of the body. As a

result, the predicted motion of the points in the arms is heavily in�uenced by local motions, while
in the rest of the body, the local motions have a very small in�uence on prediction. The network
exhibits similar selective behaviour at the second level, assigning higher attention to the points in
the left foot, increasing the in�uence of the dynamic features ⇡2

C have on the motion of the foot. In
the third and �nal level, the network learned non-zero attention values U3

C for the majority of the
body. As a result, in the Man-Running sequence, the global motion is the primary contributor to
the predicted motion of the points, with the exception of the arm and the foot regions where the
prediction is given by a motion combination from multiple levels.
Similar considerations can be derived from the second example Woman-Dancing, in which

the learned global motions are an accurate descriptor for the majority of the points, except for
2For the sake of image clarity the motion vectors were uniformly sampled

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

Local and Global MVs

| https://lasp-ucl.github.io

AGAR: A�ention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable Objects 13

(a) Man-Running. (b)Woman-Dancing.
Fig. 8. Adaptative Features Combination operation. Example of how the proposed module adaptively com-
bines local and global motion for di�erent points, and comparison with motion obtained with Classic-FP.

the U value re�ects the in�uence that the learned feature has on the predicted motion, allowing the
network to adjust the contribution of each level to the predicted motion. Namely,

 (3;8,C) = k (3;8,C) ⇥ U;
8̃,C

(10)

Lastly, the dynamic features post-attention module (3;8,C) are combined by a single learnable layer
(⇥�⇠) into the �nal dynamic features 3Final8,C 2 ⇡Final

C .

3�8=0;8,C = f
⇣
⇥�⇠ { (318,C); (328̃,C); (3

3
8̃,C
)}
⌘

(11)

4.2.1 Explainablity of the Adaptative feature combination module. A key bene�t of the Adaptative
feature combination module is that its underlying mechanism can be visualized and explained. This
can be seen in Fig. 8, which illustrates how the proposed module combines dynamic features to
produce motion vectors given two point cloud sequences (Man-Running and Woman-Dancing). For
each sequence, Fig. 8 depicts: the PCA of the dynamic features learned at the DE phase; the learned
attention values per point; the individual motion vectors2 produced at each level in the proposed
Adaptative architecture and in the Classic-FP architecture (previously presented in Section 2.2 and
Fig.2).
In the Man-Running sequence depicted in Fig. 8 (a), at the �rst level the network assigns high

attention values (U1
C) to the arms and low attention values to the points in the rest of the body. As a

result, the predicted motion of the points in the arms is heavily in�uenced by local motions, while
in the rest of the body, the local motions have a very small in�uence on prediction. The network
exhibits similar selective behaviour at the second level, assigning higher attention to the points in
the left foot, increasing the in�uence of the dynamic features ⇡2

C have on the motion of the foot. In
the third and �nal level, the network learned non-zero attention values U3

C for the majority of the
body. As a result, in the Man-Running sequence, the global motion is the primary contributor to
the predicted motion of the points, with the exception of the arm and the foot regions where the
prediction is given by a motion combination from multiple levels.
Similar considerations can be derived from the second example Woman-Dancing, in which

the learned global motions are an accurate descriptor for the majority of the points, except for
2For the sake of image clarity the motion vectors were uniformly sampled

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

Local and Global MVs

43

| https://lasp-ucl.github.io

Results

44

18 P. Gomes, et al.

Mixamo
(Synthetic Human bodies dataset)

Model CD EMD CD
Top 5%

Copy-Last-input 0.1056 123.4 0.2691
PointPWC-Net-pred [43] 0.09358 118.5 0.2601
FlowStep3D-pred [15] 0.09153 115.6 0.2575

PSTNet-pred [8] 0.08984 114.1 0.2556
PointRNN [6] 0.00351 68.0 0.1593

AGAR Classic-FP 0.00262 59.6 0.1412
Adaptative 0.00254 58.2 0.1346

Table 2. Point cloud prediction results on the Mixamo dataset

Mixamo
(Synthetic human bodies dataset)

Model Type of graph Spatial features CD EMD CD
Top 5%

AGAR
(Classic-FP)

(i) spatio-temporal X 0.00262 59.6 0.1410
(i) spatio-temporal ⇥ 0.00341 67.0 0.1602
(ii) only temporal X 0.00266 60.0 0.1417

Table 3. Comparison of three variations of the AGAR framework demonstrating gain from the including
structural relations between points in the spatio-temporal graph.

distortion has a high visual impact. This is particularly noticeable in the last frame (C = 10) of
the "Woman-Turning" sequence (in Fig. 9), where the AGAR prediction su�ers less deformation
compared to the PointRNN prediction. In the following, we analyze the improvement provided by
each component of the proposed AGAR method to better understand the impact of each limitation
on the prediction task.

To understand the impact of combining features in an adaptative manner we compare the AGAR
with Adaptive feature combination and the AGAR with Classic-FP. Table 2 shows the AGAR with
Adaptive feature combination achieves a lower prediction error compared to the AGAR with Classic-
FP. While the error improvement in terms of CD and EMD is relatively small, the CD Top 5% metric,
which is more sensitive to local distortion, shows a clear improvement in the AGAR with Adaptive
feature combination. The superior performance of adaptively combining dynamic features can also
be seen by looking at the visual results in Fig.9. We can notice the AGAR with Adaptive features
combination predicts better speci�c regions such as the hands and the legs, which involve complex
motions. This improvement is due to the module’s ability to generate re�ned motion predictions
required in these regions. These results show the clear advantage of adaptively combining
dynamic features to predict complex motions.
To understand the advantages of incorporating the structural relations between points when

dynamic learning features, in Table 3 we compare: i) an AGAR architecture; ii) an AGAR model that
does not learn spatial features (without the SS-GNN module). Hence does not take the structural
relation between the point into account, when learning dynamic features; iii) an AGAR model that
learns spatial features, but builds only a temporal graph i.e., a k-nn graph is built only connecting
each point of the frame C with points in frame C � 1 (the total number of neighbours : = 8 remains
the same for fairness). All three model variations have a Classic-FP phase. The results show there is
a relatively small gain in building a complete spatio-temporal graph but signi�cant improvement
by learning spatial features. It is worth noticing, that the CD Top 5% (the most sensitive metric to
point cloud local shape distortion) is signi�cantly lower in the model that learns spatial features
compared to the model that does not learn spatial features. This demonstrates that while both
models are able to capture the overall motion, the inclusion of spatial features in the DE phase
signi�cantly improves the accuracy and preservation of the predicted point cloud’s shape.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

AGAR: A�ention Graph-RNN for Adaptative Motion Prediction of Point Clouds of Deformable Objects 19

JPEG and CWIPC-SXR
Real-world human bodies dataset

Method JPEG CWIPC-SXR

CD EMD CD
Top 5% CD EMD CD

Top 5%
Copy Last Input 0.00118 42.0 0.09001 0.00295 43.2 0.12915

PointRNN 0.00109 41.3 0.083461 0.00157 43.4 0.10973

AGAR Classic-FP 0.00101 38.6 0.08172 0.00150 40.8 0.10655
Adaptative 0.00095 37.4 0.07754 0.00155 39.8 0.10760

Table 4. Prediction error for the JEPG and CWIPC-SXR dataset.

Argoverse
(Automobile scenes dataset)

Method Long-Term Prediction
CD EMD

Copy Last Input 0.5812 1092.3
PointRNN 0.2541 895.28

AGAR Classic-FP 0.2680 875.22
Adaptative 0.2839 893.24

Table 5. Prediction error for the Argoverse
dataset.

Fig. 10. Long-term MNIST predictions examples.

MNIST
Dataset

Method
Long-Term prediction
1 digit 2 digits

CD EMD CD EMD
Copy Last Input 262.46 15.94 140.14 15.8

PointRNN 2.25 2.52 14.54 6.42

AGAR Classic-FP 0.88 1.52 1.67 2.60
Adaptative 0.96 1.60 1.75 2.62

Table 6. Prediction error on the MNIST
dataset.

6.2 Prediction of Real Human Bodies Motions - JPEG and CWIPC-SXR dataset
We now turn our focus to real-world human bodies datasets: the JPEG and CWIPC-SXR datasets.
Since both the JPEG and CWIPC-SXR datasets are too small to train models, they are only used
for the evaluation of the models trained on the Mixamo dataset. Table 4 depicts the short-term
prediction results from real-world data from the JPEG dataset, and the CWIPC-SXR dataset. It
can be noted, the Copy-last-input has signi�cantly lower prediction error in real-world datasets
compared to the error on the Mixamo dataset. In the JPEG and CWIPC-SXR dataset, the point
clouds were acquired from real test subjects only allowed to move in a small area, resulting in a
lower magnitude of motion compared to the Mixamo dataset. Despite the lack of motion, the AGAR
model is able to make accurate predictions and achieved the smallest prediction error across all
metrics. The small improvement of the Adaptive combination over the Classic-FP can be attributed
to the low magnitude of motion in the dataset. Importantly these results demonstrate that the
AGAR model trained on synthetic human motions datasets can be e�ectively applied to real-world
human motions datasets despite the large disparity in motion magnitudes between the two datasets.

6.3 Prediction of Rigid Object - MNIST dataset Moving Digits
The simplicity of representation and movements performed by the MNIST dataset makes it the
ideal dataset to test the long-term prediction of the proposed AGAR method. Long-term prediction
is when the network uses its output predictions at a time-step as input for the subsequent time-step.
We present the prediction results for the MNIST dataset in Table 6, and prediction examples in
Fig.10. Table 6 shows that the AGAR model has superior prediction performance compared to
the PointRNN model. This performance gap is particularly large for point clouds containing two
digits. In two-digits, the Point-RNN CD prediction error is 14.54 whereas the AGAR (Classic-FP)
CD error is 1.67. This large gain is due to the AGAR’s ability to learn spatial features, which allows
it to understand the structure to discern the two distinct shapes. This improvement can be seen
in Figure 10, where all the evaluated models exhibit a progressive loss of shape, however, the
AGAR model su�ers from signi�cantly less deformation compared to Point-RNN. This visualization
demonstrates that the AGAR is better at preserving the spatial structure over time, a direct e�ect

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

| https://lasp-ucl.github.io

Take Home Message

46

• Deep learning models are black boxes that can be opened
• Graphs can help in

o Building meaningful neighborhoods

o Learning ST features with geometry information embedded

• Can graphs help further?

| https://lasp-ucl.github.io

Graph-based ML Improves Performance
• Graphs can help in

o Building meaningful neighborhoods

o Learning ST features with geometry information

embedded

• Can graphs help further?

47

| https://lasp-ucl.github.io

Graph-based ML Improves Performance

48

• K Yang, X Dong L Toni, “Laplacian-regularized graph bandits: Algorithms and theoretical analysis”, AISTATS 2020
• L. Toni, P. Frossard, “Online network source optimization with graph-kernel MAB”, ECML 2023
• H. Maretic et al., “GOT: An Optimal Transport framework for Graph comparison”, 2019

• Deformation during reconstruction remains a problem à it can

be addressed by imposing graph-based constraints (graph based

optimal transport)

(a) G1 (b) G2: kL1�L2kF = 2.828,
W2

2 (⌫G1 , µG2) = 0.912

(c) G3: kL1 �L3kF = 2.828,
W2

2 (⌫G1 , µG3) = 0.013

Figure 1: Illustration of the structural differences captured with Wasserstein distance between graphs
defined in (5). The graphs G2 and G3 are both copies of G1, with 2 edges removed. The modification
in G2 is very influential, as the two communities are almost disconnected; here, both Frobenius norm
and Wasserstein distance measure a significant difference w.r.t. G1. Conversely, the modification in
G3 is hardly noticeable; here, the Frobenius norm still measures a significant difference, whereas the
Wasserstein distance does not. The latter is a desirable property in the context of graph comparison.

2.3 Wasserstein distance between graphs

Instead of comparing graphs directly, we propose to look at the signal distributions, which are
governed by the graphs. Specifically, we measure the dissimilarity between two aligned graphs G1

and G2 through the Wasserstein distance of the respective distributions ⌫G1 and µ
G2 . More precisely,

the 2-Wasserstein distance corresponds to the minimal “effort” required to transport one probability
measure to another with respect to the Euclidean norm [3], that is

W
2
2

�
⌫
G1 , µ

G2
�
= inf

T#⌫G1=µG2

Z

X
kx� T (x)k2 d⌫G1(x), (5)

where T#⌫
G1 denotes the push forward of ⌫G1 by the transport map T : X ! X defined on a metric

space X . For normal distributions such as ⌫G1 and µ
G2 , the 2-Wasserstein distance can be explicitly

written in terms of their covariance matrices [36], yielding

W
2
2

�
⌫
G1 , µ

G2
�
= Tr

⇣
L
†
1 + L

†
2

⌘
� 2Tr

✓q
L

†
2
1 L

†
2L

†
2
1

◆
, (6)

and the optimal transportation map is T (x) = L

†
2
1

⇣
L

†
2
1 L

†
2L

†
2
1

⌘ †
2
L

†
2
1 x.

The Wasserstein distance captures the structural information of the graphs under comparison. It is
sensitive to differences that cause a global change in the connection between graph components,
while it gives less importance to differences that have a small impact on the whole graph structure.
Indeed, as graphs are represented through the distribution of smooth signals, the Wasserstein distance
essentially measures the discrepancy in lower graph frequencies, known to capture the global graph
structure. This behaviour is illustrated in Figure 1 by a comparison with a simple distance that is the
Euclidean norm between the Laplacian matrices of the graphs.2

Moreover, the optimal transportation map enables the movement of signals from one graph to another.
This is a continuous Lipshitz mapping that adapts a graph signal to the distribution of another graph,
while keeping similarity. This results in a simple and efficient prediction of the signal on another
graph. Clearly, signals that are more likely in the observed distribution will have a more robust
transportation, and different Gaussian signal models (in Equations 3 and 4) might be more appropriate
for non-smooth signals [37].

2.4 Graph alignment

Equiped with a measure to compare aligned graphs =of the same size through signal distributions, we
now propose a new formulation of the graph alignment problem. It is important to note that the graph

2Note that in our setting a possible alternative to the Wasserstein distance could be the Kullback-Leibler (KL)
divergence, whose expression is explicit for normal distributions.

4

| https://lasp-ucl.github.io

How much can graph-based ML help?

49

• K Yang, X Dong L Toni, “Laplacian-regularized graph bandits: Algorithms and theoretical analysis”, AISTATS 2020
• L. Toni, P. Frossard, “Online network source optimization with graph-kernel MAB”, ECML 2023
• H. Maretic et al., “GOT: An Optimal Transport framework for Graph comparison”, 2019

• Deformation during reconstruction remains a problem à it can

be addressed by imposing graph-based constraints (graph based

optimal transport)

• Building a spatial-temporal skeleton as prior knowledge

Features

Chapter 1. Introduction

Figure 1.4: Pipeline for a point cloud application.

such, the key to understand dynamic environments lies in learning accurate
dynamic features. For this reason, this thesis is focused on the learning the
dynamic features step of the pipeline depicted in Figure 1.4.

1.3 Learning dynamic features

Processing dynamic point clouds to learn dynamic features is very challeng-
ing due to the point cloud irregular structure. While the individual point
independence allows the point cloud to provide a very flexible representa-
tion, it also means there is no explicit relation between points. The point
cloud consists of an unordered set of points with no relationships amongst
them. As a result, there is no obvious way to learn the characteristic of
the 3D shape being represented. The challenges originated from lack of
structure are only exacerbated in the case of dynamic points clouds. In a
dynamic point cloud, the number of points can vary over time, and there is
no clear point-to-point correspondence across time. This means there is no
direct way to exploit temporal correlations to learn dynamic features.

In the last years, machine learning methods have achieved tremendous
success in extracting dynamic features from 2D video, and have come to
dominate the field of image processing. This success resulted in a strong
interest to adopt deep learning methods to learn features from point clouds.
However, the point cloud irregular format impeded the immediate adapta-
tion. Standard deep learning methods were developed for input data with
regular structure, such as 2D images structured in a regular grid. As a re-

10

Chapter 1. Introduction

Figure 1.4: Pipeline for a point cloud application.

such, the key to understand dynamic environments lies in learning accurate
dynamic features. For this reason, this thesis is focused on the learning the
dynamic features step of the pipeline depicted in Figure 1.4.

1.3 Learning dynamic features

Processing dynamic point clouds to learn dynamic features is very challeng-
ing due to the point cloud irregular structure. While the individual point
independence allows the point cloud to provide a very flexible representa-
tion, it also means there is no explicit relation between points. The point
cloud consists of an unordered set of points with no relationships amongst
them. As a result, there is no obvious way to learn the characteristic of
the 3D shape being represented. The challenges originated from lack of
structure are only exacerbated in the case of dynamic points clouds. In a
dynamic point cloud, the number of points can vary over time, and there is
no clear point-to-point correspondence across time. This means there is no
direct way to exploit temporal correlations to learn dynamic features.

In the last years, machine learning methods have achieved tremendous
success in extracting dynamic features from 2D video, and have come to
dominate the field of image processing. This success resulted in a strong
interest to adopt deep learning methods to learn features from point clouds.
However, the point cloud irregular format impeded the immediate adapta-
tion. Standard deep learning methods were developed for input data with
regular structure, such as 2D images structured in a regular grid. As a re-

10

| https://lasp-ucl.github.io

Can Graphs Help Further?

50

• Deformation during reconstruction remains a problem à it can

be addressed by imposing graph-based constraints (graph based

optimal transport)

• Building a spatial-temporal skeleton as prior knowledge

• Dynamic point cloud compression based on new ML model

10 P. Gomes, et al.

Fig. 5. Proposed AGAR prediction architecture composed of DE, FP and prediction phase.In the DE
phase, the architecture consists of an SS-GNN module followed by graph-RNN cells. The SS-GNN module
extracts spatial features from the point cloud which are then utilized by the graph-RNN cells to learn dynamic
features. In the FP phase, the state-of-art FP modules are replaced by a novel Adaptative feature combination
module able to dynamically combine hierarchical features according to the scene.

This means that only the global motion vector (pointing forward) would be su�cient to describe
the movement of the torso. However local features (hence local motions) cannot be neglected, since
this would lead to neglecting the local motions in parts with strong local movement such as the
foot. As a result, in Fig. 4 (b) local motion vectors ("1

C) clearly lose any motion interpretation and
becomes instead random vectors mainly used to compensate for the erroneous addition of multiple
motion vectors in this part of the body.

It is worth mentioning that while this understanding might appear straightforward, to the best
of our knowledge, this is the �rst work explaining PointRNN and similar hierarchical architectures
when processing 3D deformable objects, showing the limitation in adopting a �xed combination of
hierarchical features in the prediction phase. In the next section, we propose an architecture that
overcomes this limitation by introducing an attention-based mechanism in the prediction phase.

4 PROPOSED AGAR METHOD
To address the limitations identi�ed in the previous section, we now propose an improved ar-
chitecture for point cloud prediction, depicted in Fig. 5. The proposed architecture preserves the
state-of-art global framework composed of a DE, FP and prediction phase. However, we propose
to replace current state-of-art modules, with improved versions to leverage on the point cloud
semantic structure during the DE phase and to perform an adaptive combination of dynamic
features in the FP phase.

4.1 Addressing Limitation 1: Inclusion of structural relationships between points
To overcome the lack of geometrical prior with meaningful spatial/semantic information, we
propose an initial graph neural network denoted by Spatial-Structure GNN (SS-GNN) that processes
each frame to extract for each point spatial features that carry local topological information. From
the learned spatial features, we then construct a spatio-temporal graph that incorporates the point
structural/semantic information and uses that information to build representative neighbourhoods
of points. The spatio-temporal graph is processed by a proposed graph-RNN cells, that can extract
point cloud behaviour as dynamic features. Below we present each of the proposed modules in
detail.

4.1.1 Spatial-Structure GNN (SS-GNN). Given an input point cloud %C for each point 8 , the SS-GNN
learns a spatial feature B8,C describing the point’s local geometric structure. To learn these features
SS-GNN starts by constructing a coordinate graph G⇠

C = (%C , E⇠
C) by taking the points %C as vertices

and by building directed edges E⇠
C 2 R#⇥: between each point to its :-nearest neighbours based

on Euclidean distance. The SS-GNN is composed of three layers, each layer performs a graph
message-passing convolution [44]. At the ⌘-th layer, for a target point 8 , all its neighbouring points
9 2 E⇠

8 exchange a message along the edge connecting the two points. The message between points

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2023.

Encoded features

https://towardsdatascience.com/predictions-and-hopes-for-geometric-graph-ml-in-2022-aa3b8b79f5cc

J. Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 596:583–589, 2021.

Diffusion network: denoising graphs

https://towardsdatascience.com/predictions-and-hopes-for-geometric-graph-ml-in-2022-aa3b8b79f5cc

| https://lasp-ucl.github.io

Behavioral Study of Interactive Users and
its Application in Immersive

Communications

51

| https://lasp-ucl.github.io

Taxonomy

| https://lasp-ucl.github.io

• Can we identify dominant behaviours
(e.g., experiences)?

• Can we quantify users’ similarity in their
navigation?

• Can we profile users?

• How do we exploit this knowledge to
improve immersive systems?

Image Credit: https://upload.wikimedia.org/wikipedia/commons/0/04/Mobile_World_Congress_2017_%2838277560286%29.jpg

Our Main Goal

53

| https://lasp-ucl.github.io

Traditional vs Trajectory-Based Data AnalysisBehavioural Analysis In 3-DoF VR

Traditional Data Analysis
Heatmap Spatial Distribution

2π

π

0 2π

π

0

Mean angular velocity

ra
d/

se
c

Users0

π/4

π/2

3π/4

π

horizo
ntal

0

π/4

π/2

3π/4

π

vertical

0

π

π/23π/2

π
Frequency Fixation Exploration time

0 π−2π 2π−π
Longitudinal distance to starting point

[s
ec

.]

0 π 2π

Sa
m

pl
e

co
un

t

Trajectory-based Analysis

Clustering of Navigation  
Trajectories

Information 
Theory tool

TEY→X

H(Yt)

H(Xt+1) H(Xt)

User similarity over time

0 sec 25 sec 40 sec 52 sec

10 20 30 40 50 60

us
er

s

Graph modelling users
interactivity

t0
t1 t2

…

t0 t2
t1

t0

t2

t1

G0
<latexit sha1_base64="rWCtgH3uEVsgJJr4k5SGU+kxQvA=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiRWfOyKLnRZwT6gDWUynbRDJ5M4MymU0O9w40IRt36MO//GSRpErQcGDufcyz1zvIgzpW370yosLa+srhXXSxubW9s75d29lgpjSWiThDyUHQ8rypmgTc00p51IUhx4nLa98XXqtydUKhaKez2NqBvgoWA+I1gbye0FWI8I5snNrG/3yxW7amdAi8TJSQVyNPrlj94gJHFAhSYcK9V17Ei7CZaaEU5npV6saITJGA9p11CBA6rcJAs9Q0dGGSA/lOYJjTL150aCA6WmgWcm05Dqr5eK/3ndWPsXbsJEFGsqyPyQH3OkQ5Q2gAZMUqL51BBMJDNZERlhiYk2PZWyEi5TnH1/eZG0TqpOrVq7O63Ur/I6inAAh3AMDpxDHW6hAU0g8ACP8Awv1sR6sl6tt/lowcp39uEXrPcvvjqSNw==</latexit>

Gt
<latexit sha1_base64="nvb7pRs1IipNHlI/DoitgQ0fRuE=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiRWfOyKLnRZwT6gDWUynbRDJ5M4MymU0O9w40IRt36MO//GSRpErQcGDufcyz1zvIgzpW370yosLa+srhXXSxubW9s75d29lgpjSWiThDyUHQ8rypmgTc00p51IUhx4nLa98XXqtydUKhaKez2NqBvgoWA+I1gbye0FWI8I5snNrK/75YpdtTOgReLkpAI5Gv3yR28QkjigQhOOleo6dqTdBEvNCKezUi9WNMJkjIe0a6jAAVVukoWeoSOjDJAfSvOERpn6cyPBgVLTwDOTaUj110vF/7xurP0LN2EiijUVZH7IjznSIUobQAMmKdF8aggmkpmsiIywxESbnkpZCZcpzr6/vEhaJ1WnVq3dnVbqV3kdRTiAQzgGB86hDrfQgCYQeIBHeIYXa2I9Wa/W23y0YOU7+/AL1vsXJVmSew==</latexit>

??

Need to develop new tools and metrics for

• identifying key behavioral aspects of
immersive navigation

• quantifying similarities across contents
and across users

• analysing the level of interaction of the
user with the content

54

| https://lasp-ucl.github.io

Behavioral Analysis Overlooked1.2 Streaming Pipeline: Evolution Towards ODV 5

Table 1.1 Surveys related with ODV streaming systems. Level of investiga-
tion per each topic: mentioned; su�cient; deep.

Survey Acquisition Compression Delivery Rendering Quality Prediction Behavioural
Assessment Analysis

Chen et al. [15]
He et al. [16]
Fan et al. [17]
Zink et al. [18]
Azevedo et al. [19]
Yaqoob et al. [20]
Shafi et al. [21]
Xu et al. [22]
Ruan et al. [23]
Chiarotti [24]
Our chapter

standardising. Section 1.3 provides an overview of coding and delivery strategies for
the system-centric streaming, especially introducing di�erences between viewport-
independent and viewport-dependent methods. Section 1.4 highlights the role of the
user behaviour in ODV streaming and lists datasets for ODV user analyses. Section 1.5
describes how such novel interactivity can drastically improve the status quo using
user-centric streaming. To conclude, we present final remarks and highlight new
directions in Section 1.6.

1.2 Streaming Pipeline: Evolution Towards ODV
In this section, we provide an overview of the ODV streaming pipeline. We start
with an historical overview of ODV to contextualize the first steps that opened the
gate to ODV streaming research, which is the main focus of this current chapter, we
then conclude by explaining how key components of the streaming pipeline, from
acquisition to rendering, have evolved and have been standardized to enable ODV
services.

Table 1.2 depicts the historical evolution that led to current technology used on
ODV systems. This evolution has been characterised by three key components: 1)
large-scale utilization of ODV applications; 2) ODV displaying technology; 3) tech-
nological advances in the streaming pipeline. The first service that appeared in
2007 based on omnidirectional content was the Google Maps Street View, which
allows users to virtually navigate on a street using a sequence of omnidirectional im-
ages [25]. After this, the ODV market has grown significantly mainly when YouTube
and Facebook (and Vimeo) allowed the upload and share of 360-degree content on
their platforms in 2015 (in 2017) [29,30,36]. The interest in ODV systems then has
been grown exponentially: for example, BBC and the French cultural network ARTE
used 360-video for immersive documentaries. Now, 360-degree content is widely
used across multiple sectors (e.g., e-culture, entertainment, retail, live sports) ampli-
fied even further from recent attention to metaverse applications. This widespread

S. Rossi, A. Guedes, and L. Toni, “Coding, Streaming, and User Behaviour in Omnidirectional Video” Elsevier, 2022.

55

| https://lasp-ucl.github.io

User Behaviour Analysis in VR system

56

D) User’s Trajectories Analysis
"! "" "#. . .

!!!!

A) Experiments B) Raw Data Collected

users

video C) Pre-Processing

#! =< ('",)"), . . , ('#,)#) >

users

video
Intra-user behaviour

analysis:

Actual Entropy
Fixation map Entropy

To characterise the navigation

of each user over time against

different video contents.

Inter-user behaviour analysis

User Affinity Index

To study the behaviour of a single user in

correlation with others in the same content.

| https://lasp-ucl.github.io

A Graph Approach

57
57

t0 t2t1

t0

t2

t1

57

S. Rossi, et al., “Spherical clustering of users navigating in 360-degree content.”, ICASSP 2019.

Proxy for viewport overlap: distance between viewport center

| https://lasp-ucl.github.io

A Graph Approach

58
58

t0 t2t1

t0

t2

t1

58

Our Goal: To identify a metric able to measure the similarity (in
terms of navigation) between users.

S. Rossi, et al., “Spherical clustering of users navigating in 360-degree content.”, ICASSP 2019.

• C: number of clusters detected in a frame by
the clique-clustering

• xi : % of users in cluster i
• wi : number of users in cluster i

Affinity metric

| https://lasp-ucl.github.io

Analysis based on Clusters

59

Users behaving similarly

S. ROSSI, C. OZCINAR, A. SMOLIC, L. TONI, “Do Users Behave Similarly in VR? Investigation of the User Influence on the System Design “,

ACM TOMM 2020

| https://lasp-ucl.github.io

Users Similarities vs Displaying Devices10 S. Rossi, et al.

Fig. 3. Boxplots per viewing device of Users’ A�inity Index (UAI) for each video in the dataset. The lower and
upper side of the rectangular represents 25% and 75% percentile, respectively. While diamond is the mean
value of User A�inity Index (UAI) per the entire video.

� in all di�erent settings and video of the test. As expected, this is evident in Action and Movie
categories, while less present in the Documentary contents, that usually have a less dominant focus
of attention. In this latter case, the interaction is device-dependant, with a more spread distribution
of viewport’s centers with HMD when compared to laptop and devices.

4.2 Looking for Users’ Similarities
The metrics studied in Section 4.1 reveal general and useful features of users’ behaviour, however
they do not necessary provide an answer to one simple and yet crucial question: “Canwe predict users’
behaviour?". Without pretending to fully answer to this question with the following data analysis,
we truly believe that a key information to grasp is “Do users behave similarly?". This is the key as
users with poor similarity in the navigation are highly challenging to predict. This motivates the
following analysis, aimed at identifying behaviour similarities among users, across video content
and/or devices; hence, the importance of developing metrics able to capture this information.
Speci�cally, we analyse our dataset with the clique-based clustering algorithm presented in [44],
which is able to identify users clusters based on their consistency in the navigation. In practice,
the algorithm detects and puts together users that consistently display similar viewports over
time while consuming the ODV content. Also, this is done by taking into account the spherical
geometry of the ODVs. We therefore introduce a novel metric (based on the clique-based clustering
algorithm) to better re�ect similarity among users’ navigation trajectories within the same given
ODV. We de�ne this metric as the User A�nity Index (UAI), given as follows:

UAI =

ÕC
i=1 xi ·wiÕC
i=1wi

(1)

where C is the number of clusters detected in a frame by the clique-clustering2, xi is the % of users
(i.e., out of the whole population/users sampled) in cluster i andwi is the number of users in cluster i .
In other words, the UAI represents the weighted average of cluster popularity (i.e., how many users

2The clique-based clustering is applied with a geodesic distance threshold equal to � /8.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article . Publication date: 2019.

| https://lasp-ucl.github.io61

User Navigation in 6-DoF

• → user position on the VR floor!

Volumetric
Objecty

x
Virtual Floor

!"!
!#!""!

!!"
!#"

!$"

!!"

!!#

Time instant "

$"#
#$%

• → viewport center projected on
the volumetric object

!!"

!!#

Time instant "

!,-

#$%
##$$"#

• → relative distance between user
and volumetric content

#

!

S. Rossi, I. Viola, L. Toni, P. Cesar A Clustering Approach to Unveil User Similarities in 6-DoF Extended Reality Applications.
ACM TOMM Submission 2024 / MMsys 2023

Which proxy of the viewport overlap can we use?

| https://lasp-ucl.github.io

Seeking a New Metrix for 6-DoF
111:8 Rossi, et al.

Table 1. Definition of distance features and measurements.

Symbol De�nition

D
is
ta
nc
e

Fe
at
ur
es 8>><

>>:

G user position on the VR �oor
? viewport center projected on the volumetric content
A relative distance between user and volumetric content
E vector of the viewing direction

D
is
ta
nc
e

M
ea
su
re
m
en
ts 8>>>><

>>>>:

L(·, ·) di�erence of relative distance between two users
E(·, ·) Euclidean distance
G(·, ·) Geodesic distance
\ (·, ·) Angle between two vectors

machine with CPU E5-4620 at 2.10 GHz. This operation needs to be computed for all the possible
combinations of users, leading to a large overhead which does not meet requirements for real-time
and scalable applications. A new measure is needed to perform real-time applications. In the rest
of the paper, we will use this metric as the ground truth of overlap among users and investigate
di�erent weights that can better approximate viewport overlap between users, and thus being an
indication of users (dis)similarity.

3.3 Clustering as a tool for behavioural analysis
Being able to assess users similarities in an objective way might be crucial for di�erent applications
such as behavioural analysis. As shown in [35], a clique-based clustering algorithm is used to detect
users with similar behaviour. This requires a reliable graph to be constructed in such a way that only
the nodes that identify similar users (i.e., who are displaying the same portion of the content) are
connected. Equipped with such a meaningful graph, the clique-based clustering identi�es optimal
sub-graphs of all inter-connected nodes, ensuring the identi�cation of the largest cluster of users all
sharing a large viewport overlap. In more detail, given a set of users who are experiencing the same
content, we can represent their movements in a time-window) as a set of graphs {GC })C=1. Each
unweighted and undirected graph GC = {V , EC ,AC } represents behavioural similarities among
users at time C , whereV and EC denote the node and edge sets of GC , respectively. Each node in
V corresponds to a user interacting with the content. Each edge in EC connects neighbouring
nodes de�ned by the binary adjacency matrix AC . Assuming that users are connected if they are
displaying similar content, we can formally de�ne the adjacency matrix AC as follow:

AC (8 , 9) =
(
1, if 6C (8 , 9) � ⌧C⌘

0, otherwise.
(2)

where6C (8 , 9) is a similarity metric between user 8 and 9 and⌧C⌘ is a thresholding value. On this �nal
graph, the clique-based clustering algorithm can be applied to identify a set of users all connected
(i.e., clique), and therefore with similar behaviour. In [35], this graph construction is based on a
pairwise similarity metric speci�cally for the 3-DoF trajectories.

Identifying a general and reliable metric 6(8 , 9) that approximates behavioural similarities among
users who experience the same 6-DoF content is a key step to extend the applicability of exiting
behavioural tools for 3-DoF scenario, such as the clique-based clustering, and it is the main focus of
this paper, aimed at formalising the need for this metric in 6-DoF , formulating various multi-modal
metrics, and testing/validating such metrics into real-world data both in XR settings.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Clustering Approach to Unveil User Similarities in 6-DoF Extended Reality Applications 111:15

(a) Ground-truth ($C⌘ = 75%) (b) F1 (single feature metric) (c) F2 (single feature metric)

(d) F3 (single feature metric) (e) F4 (single feature metric) (f) F5 (single feature metric)

(g) F6 (multi-feature metric) (h) F7 (multi-feature metric) (i) F8 (multi-feature metric)

(j) F9 (multi-feature metric) (k) F10 (multi-feature metric) (l) F11 (multi-feature metric)

Fig. 4. Cluster results in frame 50 of sequence PC1 (Longdress). Each dot represents a user on the virtual floor
while the blue star stands for the volumetric content. In the legend in brackets, per each cluster with more
than 2 users are reported: the number of users in the same cluster, averaged pairwise viewport overlap and
corresponding variance within the cluster.

on the volumetric content, on which F3 and F4 are based, is not su�cient to correctly identify
similar users. Analogously, considering only the di�erence in terms of the relative distance between
the user and volumetric content, as done inF2, does not allow the detection of similarity among
users. Thus, the most promising metrics in the group of single feature metrics seem to beF1 and

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Clustering Approach to Unveil User Similarities in 6-DoF Extended Reality Applications 111:15

(a) Ground-truth ($C⌘ = 75%) (b) F1 (single feature metric) (c) F2 (single feature metric)

(d) F3 (single feature metric) (e) F4 (single feature metric) (f) F5 (single feature metric)

(g) F6 (multi-feature metric) (h) F7 (multi-feature metric) (i) F8 (multi-feature metric)

(j) F9 (multi-feature metric) (k) F10 (multi-feature metric) (l) F11 (multi-feature metric)

Fig. 4. Cluster results in frame 50 of sequence PC1 (Longdress). Each dot represents a user on the virtual floor
while the blue star stands for the volumetric content. In the legend in brackets, per each cluster with more
than 2 users are reported: the number of users in the same cluster, averaged pairwise viewport overlap and
corresponding variance within the cluster.

on the volumetric content, on which F3 and F4 are based, is not su�cient to correctly identify
similar users. Analogously, considering only the di�erence in terms of the relative distance between
the user and volumetric content, as done inF2, does not allow the detection of similarity among
users. Thus, the most promising metrics in the group of single feature metrics seem to beF1 and

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

| https://lasp-ucl.github.io

User Behaviour Analysis in VR system

63

D) User’s Trajectories Analysis
"! "" "#. . .

!!!!

A) Experiments B) Raw Data Collected

users

video C) Pre-Processing

#! =< ('",)"), . . , ('#,)#) >

users

video
Intra-user behaviour

analysis:

Actual Entropy
Fixation map Entropy

To characterise the navigation

of each user over time against

different video contents.

Inter-user behaviour analysis

User Affinity Index

To study the behaviour of a single user in

correlation with others in the same content.

| https://lasp-ucl.github.io

Intra-User behaviour metrics

64

Actual Entropy

Introduced as a proxy of predictability of human mobility patterns [1], the
actual entropy quantifies the information carried within a given trajectory.

%$%"(') ≈ 1
+ ∑
"&'

(
-"

)'
log*(+)

Alexandre Alahi et al, “Social LSTM: Human Trajectory Prediction in Crowded Spaces”, CVPR 2016
C. Song, Z. Qu, N. Blumm, and A. Barabási. 2010. Limits of predictability in human mobility. Science.

Key basics from the study of human behavior / pedestrian

| https://lasp-ucl.github.io

IXR ’23, October 29, 2023, O�awa, ON, Canada Silvia Rossi, Laura Toni, & Pablo Cesar

(a) Video “Diving” from 2_MMsys2017_2 [17] (b) Low Entropy User in “Diving” (c) High Entropy User in “Diving”

(d) “AcerPredator” from 6_PAMI2018 [38] (e) Low entropy user in “AcerPredator” (f) High Entropy User in “AcerPredator”

Figure 1: Comparison of navigation trajectories with di�erent levels of Actual Entropy (AE in the legend). Each row corresponds
to two videos selected from two distinct datasets. In the middle column, the navigation of users is characterised by low entropy
values while high entropy users are given in the right column.

variability of human navigation behaviours, and thus estimate their
predictability [32]. This metric, namely actual entropy, measures
the information carried within a given trajectory, considering both
the visiting rate but also the temporal order of visited areas. The
information captured by the entropy is highly related to the de-
gree of predictability of a variable, with low values of entropy for
highly predictable events [11]. In the context of VR, the entropy
of navigation trajectories has been applied for general behavioural
studies. These preliminary investigations have demonstrated the
superiority of actual entropy in detecting general patterns in navi-
gation compared to heatmaps, primarily due to its consideration of
the temporal order of navigation positions [29]. More in general,
these studies have shown that viewers are typically consistent in
their way of navigating: the areas that most likely will be displayed
by a user do not depend only on the visual characteristic of the
multimedia content but also on the personality, preferences and
past history of the speci�c viewers [29, 30].

In this paper, we want to move a step further and investigate
the role of entropy in the predictability of navigation trajectories
in the VR domain. Having a holist metric capable to capture in
advance the user behaviour and determining whether the viewers’
navigation trajectory is more predictable could be crucial for the
prediction task at large. For example, such a metric can be used to
recognise outliers during the data preparation or to select the most
suited prediction models based on the users’ pro�les. To motivate
our intuition, Figure 1 shows the navigation trajectories for two
di�erent VR videos of users with di�erent behaviours and thus
opposite values of actual entropy (corresponding values of entropy
are provided in the caption of each sub-�gure). When individuals
exhibit a highly regular pattern or limited movements, their actual
entropy tends to be small, indicating high predictability in their
navigation trajectories. For instance, users in Figure 1 (b,e) explore

only a small portion of the content (i.e., central area of the video)
and focus on the �rst scene/object that they detected. Conversely,
in the same selected videos, certain viewers exhibit a more eclectic
approach to experiencing the VR content, with a tendency to navi-
gate the entire video and not focus on speci�c areas as shown in
Figure 1 (c,f). This behaviour suggests being more challenging to
predict and more prone to high prediction errors. In this case, the
actual entropy of these users is indeed higher.

To validate our intuition, we explore the correlation between the
entropy of navigation trajectories in VR and their prediction error.
Our analysis is based on several public collections of VR trajecto-
ries (i.e., 7 di�erent datasets). As a predictive tool for navigation
movements, we consider a simple yet powerful publicly available
algorithm, deep-position-only baseline introduced in [24]. By com-
paring the prediction error per trajectory with the corresponding
values of entropy and distinguishing users in two classes of entropy
(i.e., low and high), our results con�rm our initial hypothesis. Nav-
igation trajectories characterised by low values of entropy led to
small prediction errors, and thus are easier to be predicted. While
users more eclectic and characterised by high values of entropy
have on average high values of prediction error. Thanks to its ability
to detect discontinuity and randomness in trajectories, the actual
entropy seems a promising tool also in the VR context.
To summarise, the main contributions of this work are the fol-
lowing: (1) conducting an extensive data analysis across a wide
range of VR datasets; (2) exploring novel criteria that leverage an
entropy-based metric to di�erentiate users based on their naviga-
tion pro�les, and (3) examination of the correlation between these
groups of users and their predictability in navigation. Given the
importance of data preparation, augmentation and exploration in
every machine learning task, we believe that current works focused
only on �nding the right deep learning architecture to forecast

Actual Entropy for Users’ Behaviour

S. Rossi, L. Toni, P. Cesar, “Correlation between Entropy and Prediction Error in VR Head Motion Trajectories”, IMX Workshop, ACM MM 2023

65

| https://lasp-ucl.github.io

Intra-User behavior analysis
A

B
Users profiling (high- low- interaction)

despite the content

S. Rossi, L. Toni, "Understanding user navigation in immersive experience: an information-theoretic analysis” MMVE 2020
66

| https://lasp-ucl.github.io

Correlation between Entropy and Prediction Error in VR Head Motion Trajectories IXR ’23, October 29, 2023, O�awa, ON, Canada

(a) “Diving” from 1_MMsys2017_1

(b) “Guitar” from 6_PAMI2018

Figure 4: Distribution of prediction error per user in two di�erent content. The users are arranged in ascending order based on
their mean value of actual entropy across the entire dataset, with lower values on the left and higher values on the right. The
black line shows the mean value of prediction error across all viewers in the selected video.

[6] Vittoria Colizza, Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. 2006.
The role of the airline transportation network in the prediction and predictability
of global epidemics. Proceedings of the National Academy of Sciences (2006).
https://doi.org/10.1073/pnas.0510525103

[7] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 2017. 360-degree
video head movement dataset. In Proceedings of ACM Multimedia Systems Con-
ference. 199–204. https://doi.org/10.1145/3193701.

[8] Justin Cranshaw, Eran Toch, Jason Hong, Aniket Kittur, and Norman Sadeh.
2010. Bridging the gap between physical location and online social networks. In
Proceedings of the 12th ACM international conference on Ubiquitous computing.
https://doi.org/10.1145/1864349.1864380

[9] Andrea Cuttone, Sune Lehmann, and Marta C González. 2018. Understanding
predictability and exploration in human mobility. EPJ Data Science (2018). https:
//doi.org/10.1140/epjds/s13688-017-0129-1

[10] Erwan J. David, Jesús Gutiérrez, Antoine Coutrot, Matthieu Perreira Da Silva,
and Patrick Le Callet. 2018. A dataset of head and eye movements for 360� videos.
In Proceedings of ACM Multimedia Systems Conference. ACM. https://doi.org/10.
1145/3204949.3208139

[11] Douglas do Couto Teixeira, Jussara M Almeida, and Aline Carneiro Viana. 2021.
On estimating the predictability of human mobility: the role of routine. EPJ Data
Science (2021). https://doi.org/10.1140/epjds/s13688-021-00304-8

[12] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen,
and Cheng-Hsin Hsu. 2017. Fixation Prediction for 360 Video Streaming in
Head-Mounted Virtual Reality. In Proceedings of ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video. https://doi.org/10.1145/
3083165.3083180

[13] Torres I. Hupont, V. Charisi, G. De Prato, K. Pogorzelska, S. Schade, A. Kotsev,
M. Sobolewski, N. Duch Brown, E. Calza, C. Dunker, F. Di Girolamo, M. Bellia,
J. Hledik, I. Nai Fovino, and M. Vespe. 2023. Next Generation Virtual Worlds:

Societal, Technological, Economic and Policy Challenges for the EU. Publications
O�ce of the European Union (2023). https://doi.org/10.2760/51579

[14] Gazi Karam Illahi, Ashutosh Vaishnav, Teemu Kämäräinen, Matti Siekkinen, and
Mario Di Francesco. 2023. Learning to Predict Head Pose in Remotely-Rendered
Virtual Reality. In Proceedings of the 14th Conference on ACM Multimedia Systems.
27–38. https://doi.org/10.1145/3587819.3590972

[15] Yili Jin, Junhua Liu, Fangxin Wang, and Shuguang Cui. 2022. Where Are You
Looking? A Large-Scale Dataset of Head and Gaze Behavior for 360-Degree
Videos and a Pilot Study. In Proceedings of ACM International Conference on
Multimedia. https://doi.org/10.1145/3503161.3548200

[16] Mu Li, Kanglong Fan, and Kede Ma. 2023. Scanpath Prediction in Panoramic
Videos via Expected Code Length Minimization. arXiv preprint arXiv:2305.02536
(2023).

[17] Wen-Chih Lo, Ching-Ling Fan, Jean Lee, Chun-Ying Huang, Kuan-Ta Chen, and
Cheng-Hsin Hsu. 2017. 360� video viewing dataset in head-mounted virtual
reality. In Proceedings of ACM Multimedia Systems Conference. https://doi.org/10.
1145/3192927

[18] Dario D. R. Morais, Lucas S. Altho�, Ravi Prakash, Marcelo M. Carvalho, and
Myléne C.Q. Farias. 2021. A Content-Based Viewport Prediction Model. In
Electronic Imaging. https://doi.org/10.2352/ISSN.2470-1173.2021.9.IQSP-255

[19] Afshin Taghavi Nasrabadi, Aliehsan Samiei, and Ravi Prakash. 2020. Viewport
prediction for 360� videos: a clustering approach. In Proceedings of ACMWorkshop
on Network and Operating Systems Support for Digital Audio and Video. https:
//doi.org/10.1145/3386290.3396934

[20] Anh Nguyen, Zhisheng Yan, and Klara Nahrstedt. 2018. Your Attention is Unique:
Detecting 360-Degree Video Saliency in Head-Mounted Display for Head Move-
ment Prediction. In Proceedings of ACM International Conference on Multimedia.
https://doi.org/10.1145/3240508.3240669

S. Rossi, L. Toni, P. Cesar, “Correlation between Entropy and Prediction Error in VR Head Motion Trajectories”, IMX Workshop, ACM MM 2023

Correlation with Prediction Error

LSTM

!!"
!#"

!$"

!!"
!#"

!$"

67

| https://lasp-ucl.github.io

• Graph-based clustering and information theory metrics can be

used as novel metrics for studying users’ behaviour

• Metrics can be extended to 6-DoF systems (?)

• Content and display settings do impact the users’ behaviour, but at

the same time users tend have their own “style” of interaction

– Can we profile users? With application toward the healthcare

sector?

– What can we infer from users’ trajectory (privacy concerns)

• Link between Entropy and estimation error

– Can we create better dataset to train prediction models?

Take Home Message

68

Feature Works and Open Challenges

[1] X Zhang, et al., “Graph Learning Based Head Movement Prediction for Interactive 360 Video Streaming” IEEE Transactions on Image Processing,
[2] T Maugey, “Graph Spectral 3D Image Compression”, Graph Spectral Image Processing, 105, 2021

• Analysis of users behavior to develop user-centric systems (coding, quality,
streaming etc. tailored to users)

• Graphs can further improve users analysis/prediction [1] and can help toward
spherical processing [2]

Feature Works and Open Challenges
• Analysis of users behavior to develop user-centric systems (coding, quality,

streaming etc. tailored to users)

• Graphs can further improve users analysis/prediction [1] and can help toward
spherical processing [2]

• Metrics for understanding users behaviour can be extended to healthcare,
performing arts, etc with HCI and social science interconnection

VR therapists Live performance

User engagement for art/cultural heritage and healthcare

| https://lasp-ucl.github.io

Conclusions

71

• GSP-based ML as
growing fields

• Many Applications to
MM

• Metaverse with high potential impact
• Many Challenges need to be addressed
• We will focus on user-centric systems

and new modalities

Dynamic Point Cloud Prediction

• Point-based processing algorithms. Current SOTA
lack of structural relationship à graph processing is
essential to overcome this limitation à Dynamic
features extraction via GNN

• Complex motions requires attention based
mechanism à Interpretability perspective to MVs

Future Directions

• Graph based Optimal transport
to preserve geometry

• Graph-based generative models
• Applications to robotics/ new

sensors/ modalities

Do users interact in similar way?

• Graph to capture users’ similarity
• Graph-based clustering to detect

meaningful clusters and derive quantitative
similarity metric

• User affinity grows with focus of attention
• User affinity is affected by displaying device

t
0

t
2

t
1

t
0

t
2 t
1

Users Profiling?
• Users interact in consistent way
• Quantitative metric to capture this

behaviour

!! !" !#. . .

$!$!

Thank You! Questions?
Learning and Signal Processing Lab

UCL
https://lasp-ucl.github.io

https://laspucl2016.com

