
Vrije Universiteit Amsterdam Centrum Wiskunde & Informatica Amsterdam

Master Thesis

Temporal Interpolation of Dynamic Point
Clouds using Convolutional Neural Networks

Author: Jelmer Nicolaas Mulder1,2 (2526631)

1st supervisor: Prof.dr. D.C.A. Bulterman1,2

daily supervisor: Dr. P.S. César Garcia2,3

Dr. F. De Simone2,4

2nd reader: Drs. A.J. Jansen2

1Vrije Universiteit, Amsterdam, The Netherlands
2Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

3Delft University of Technology, Delft, The Netherlands
4École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

A thesis submitted in fulfillment of the requirements for
Master of Science degree in Parallel and Distributed Computer Systems

August 19, 2019

Abstract

In recent years there has been an increased interest in Cross Reality (XR). One
representation that sees frequent use in XR is that of a point cloud, a data
structure that models volumetric visual data as a set of individual points in
space. Points clouds are voluminous in size, and thus require high bandwidth
to transmit. In practise this means that concessions have to be made either
in spatial- or temporal resolution. In this thesis we propose a temporal inter-
polation architecture capable of increasing the temporal resolution of dynamic
point clouds. With this technique, dynamic point clouds can be transmitted
in a lower temporal resolution, after which a higher temporal resolution can
be obtained by performing the interpolation on the receiving side.

Our interpolation architecture works by first downsampling the point clouds to
a lower spatial resolution, then estimating scene flow, and finally upsampling
the result back to the original spatial resolution. To improve the smoothness of
the interpolation result, we additionally apply a novel technique called neigh-
bour snapping. In order to estimate scene flow, we use a newly designed neural
network architecture. To be able to train and evaluate this network, we have
created a synthetic point cloud data set of animated human bodies.

We evaluate our architecture through a small-scale user study and with ob-
jective quality metrics. Existing objective quality metrics for point clouds are
known to have poor correlation with user perception. Our findings confirm
this, as the metrics we report correlate poorly with themselves and with the
results from the user study. The user study shows that on average, participants
prefer the temporally interpolated sequences generated by our architecture over
current state-of-the-art or sequences that have not been interpolated.

We have shown that our approach is capable of performing temporal interpola-
tion on synthetic dynamic point clouds. Further interesting research directions
include making the architecture run in real-time, improving performance when
the motion between consecutive frames is large, and training and evaluating
the system using a real-world data set.

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Background & context . 1
1.2 Problem statement . 6
1.3 Methodology . 9
1.4 Contributions . 9
1.5 Structure . 10

2 Related Work 13
2.1 Point clouds . 14
2.2 Deep learning . 17
2.3 Video frame interpolation . 21
2.4 Learning on point clouds . 22

2.4.1 2D view-based methods . 23
2.4.2 Volumetric methods . 24
2.4.3 Geometric deep learning & PointNets 25

2.5 Upscaling point clouds . 26
2.6 Scene flow . 27
2.7 Point cloud distance metric . 28
2.8 Data sets . 30

3 Architecture 33
3.1 Architectural decisions . 33

3.1.1 Interpolation approach . 33
3.1.2 Input representation . 34

i

CONTENTS

3.1.3 Input features . 35
3.1.4 Output . 35
3.1.5 Loss function . 36

3.2 High-level architecture . 37
3.3 Downsampling . 37
3.4 Interpolation network . 38

3.4.1 Point matching . 39
3.4.2 Flow refinement . 40

3.5 Upsampling . 41
3.6 Neighbour snapping . 42

4 Results 45
4.1 Data sets . 45
4.2 Evaluation . 48

4.2.1 Implementation . 48
4.2.2 Training . 49
4.2.3 Runtime performance . 50
4.2.4 Visual results . 51
4.2.5 Objective metrics . 53
4.2.6 User study . 56

4.3 Analysis . 62

5 Conclusion 65
5.1 Discussion . 65

5.1.1 Limited availability of data sets . 66
5.1.2 Reusability of network architecture 67
5.1.3 Scaling . 68
5.1.4 Real-time interpolation . 69
5.1.5 Motion distance . 70
5.1.6 Distortion metrics as loss function 70
5.1.7 Objective metrics for evaluation . 72

5.2 Future work . 73
5.3 Conclusion . 74

APPENDICES 75

A Data set creation 75

ii

CONTENTS

B User study material 79
B.1 Informed consent form . 80
B.2 Participant information form . 81
B.3 Video rating form . 82
B.4 Video viewing interface . 83

References 85

iii

CONTENTS

iv

List of Figures

1.1 Comparison of mesh and point cloud . 2
1.2 Point cloud capture devices . 3
1.3 Consumer-grade capture setup . 4
1.4 Example of high resolution point cloud . 5

2.1 Surface normals . 15
2.2 Comparison of downsampling techniques . 16
2.3 Example neural network architecture . 17
2.4 Activation functions . 18
2.5 2D convolutional layer example . 20
2.6 Data set - 8i Voxelized Full Bodies . 30
2.7 Data set - Microsoft Voxelized Upper Bodies 31

3.1 Frame-by-frame interpolation scheme . 34
3.2 High-level architecture . 37
3.3 Neural network architecture . 38
3.4 Point matching module architecture . 40
3.5 Flow refinement module architecture . 41
3.6 Example of flow upsampling . 42
3.7 Necessity of neighbour snapping . 42
3.8 Neighbour snapping . 44

4.1 Data set - Synthetic (Rigid) . 46
4.2 Data set - Synthetic (Human) . 47
4.3 Training metrics phase 1 . 49
4.4 Training metrics phase 2 . 50
4.5 Example of interpolated sequence . 51

v

LIST OF FIGURES

4.6 Interpolated frame comparison . 52
4.7 Scene flow visualization . 53
4.8 Error of interpolated sequence . 54
4.9 User study - Mean rating per sequence . 58
4.10 User study - Rating distribution per variant 58
4.11 User study - Variant matrix (overall) . 59
4.12 User study - Variant matrix (per sequence) 60
4.12 User study and objective metric correlation matrix 64

5.1 Example of inadequate projections . 71
5.2 Example of failure of point-to-point and point-to-plane metrics as loss function 72

B.1 User study interface . 83

vi

List of Tables

2.1 Data set - 8i Voxelized Full Bodies . 31
2.2 Data set - Microsoft Voxelized Upper Bodies 32

4.1 Data set - Synthetic (Rigid) parameters . 47
4.2 Runtime performance . 50
4.3 Objective metrics (100k points) . 56
4.4 Objective metrics (2048 points) . 56

vii

LIST OF TABLES

viii

1

Introduction

In recent years there has been an increased interest in Cross Reality (XR). One repre-
sentation that sees frequent use in XR technologies is that of a point cloud (PC), a data
structure that models volumetric visual data as a set of individual points in space. Point
clouds are voluminous in size, and thus require high bandwidth to transmit. In practise
this means that concessions have to be made either in spatial resolution or in temporal
resolution. In this thesis we propose a temporal interpolation architecture capable of in-
creasing the temporal resolution of a point cloud sequence. With this technique, point
cloud sequences can be transmitted in a lower temporal resolution, after which a higher
temporal resolution can be obtained by performing the interpolation on the receiving side.

In Section 1.1 we first provide some background about points clouds. We discuss what
point clouds are, why they are useful, how they are captured, what challenges come with
their use, and what benefits can be had from applying temporal interpolation on them. In
Section 1.2 we more formally identify the goals of this research, by detailing our Research
Objectives. In Section 1.3 we discuss the methodology that will be used to address these
Research Objectives. In Section 1.4 we then provide an overview of the contributions of
this work. Lastly, in Section 1.5, we explain the structure of the rest of this thesis.

1.1 Background & context

Cross Reality (XR) is a collective term for a range of cross reality techniques, such as
Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality (MR). These immer-
sive techniques create new forms of reality by bringing digital objects into the physical
world, or bringing physical objects into the digital world. Of particular interest is creating
3D digital representations of the physical world, allowing end-users to freely navigate this

1

1. INTRODUCTION

(a) Polygon mesh (b) Point cloud

Figure 1.1: Comparison of polygon mesh and point cloud. Both renderings represent
the Stanford bunny (2).

representation with Six Degrees of Freedom (6DoF). Cross reality techniques have seen
an increased popularity in recent years, which has created a demand for efficient repre-
sentation of dynamic volumetric visual data. Currently, the two most frequently used
representations are polygonal meshes and point clouds (1). Figure 1.1 shows the Stanford
bunny (2) represented both as mesh and point cloud.

In a polygon mesh, objects are modelled as a collection of faces. These faces are com-
monly triangles, but can also be more-sided polygons. While polygon meshes can be used
as compact representations of dense surfaces, they have problems representing noisy ge-
ometry. Additionally, reconstructing meshes is a computationally intensive process, which
limits the use of meshes in real-time applications. A point cloud models objects as a
collection of points, where each point has a spatial coordinate, and optionally additional
information like color, reflectivity, or surface normals. Points clouds do not require time-
consuming reconstruction, which makes them more suitable for real-time systems. On
the other hand, point clouds typically cannot model surfaces as compactly as meshes, re-
quiring more space. Both meshes and point clouds can be used to model dynamic scenes,
simply by creating a sequence out of the still captures. In the case of meshes this would be
called a time variant mesh (3), in the case of point clouds this would be called a dynamic
point cloud (4). In both cases we will refer to an individual still capture as a frame of that
sequence. The frame rate is then defined as how many frames the sequence contains per
second. In this thesis we will be working with dynamic point clouds.

Point clouds are not just used in XR, but in various fields. For example, they see use in
gaming (5), free viewpoint videos (6), cultural heritage (7), automated driving (8), real-

2

1.1 Background & context

(a) LiDAR scan-
ner (12)

(b) Microsoft Kinect v2 (13) (c) Intel RealSense D435 (14)

Figure 1.2: Examples of point cloud capture devices

time immersive telepresence (9, 10), and more (11). The two main acquisition techniques
for point clouds are the use of LiDAR scanners and depth cameras, each being more suited
for different use cases.

LiDAR is a 3D scanning technique that measures the distance to an object by emitting
laser pulses and measuring the reflected pulses. Distance to the object can then be esti-
mated based on differences in laser return times and wave lengths. LiDAR is flexible to
lighting conditions, and little computation is required to process the measurements. On
the other hand, LiDAR systems only output shape information, and thus do not capture
any color information. Additionally, LiDAR systems are at this moment expensive, and
the achievable resolution and frame rate are typically relatively low. LiDAR is commonly
used in automatic driving solutions and for scanning of geographical regions. An example
of a LiDAR scanner is shown in Figure 1.2a.

An alternative capture method is to use depth cameras. Some of the advantages of these
cameras over LiDAR are that they are cheap, they provide color information, and they
often support a higher resolution and frame rate. Contrarily, measurements from depth
cameras usually require a higher degree of computation, and output is highly dependent
on the lighting situations. In recent years an increasing number of affordable depth camera
solutions have been introduced to the market, making them more accessible to consumers,
and positioning them as interesting enablers of XR applications. Examples of such afford-
able depths cameras are the Microsoft Kinect (5) (Figure 1.2b) and Intel RealSense (15)
(Figure 1.2c). Figure 1.3 shows an example of a consumer-grade capture setup made out
of depth cameras.

The dynamic point cloud sequences generated by these capture setups can grow large in
size. Let us look for example at the sequence named Loot from the 8iVFB data set (16)

3

1. INTRODUCTION

Figure 1.3: Consumer-grade capture setup This setup consists of four Intel RealSense
D415 depth cameras mounted on tripods. The room is fitted with a green screen, to allow the
background to be easily removed. In this picture, the cameras a capturing a stack of marked
boxes, to facilitate the alignment process.

(more information in Section 2.8). Figure 1.4 shows a rendering of one frame of this
sequence. In total, the sequence is 10 seconds long, contains 30 frames per second with
approximately 793 000 points per frame, and takes 5.1 GB of storage space for the entire
sequence, or 522 MBps to stream it in real-time.

For certain XR applications, for example real-time immersive telepresence, we might be
interested in streaming dynamic point clouds in real-time from one machine to another
over the internet. Due to the large size dynamic point clouds can reach, bandwidth can
become a bottleneck when using consumer hardware. Let us consider for example the
consumer-grade capture setup shown in Figure 1.3, consisting of four Intel RealSense
D415 depth cameras. Even in this modest setup, we run into bottlenecks both in the
interface between camera and host, and in the network between the two hosts.

First, there is the channel between the capture device and the host. This might be USB
3.0 for instance, as is the case with the Intel RealSense cameras. USB 3.0 theoretically
supports 640 MBps throughput, but in practise not more than 410 MBps, or even not
more than 154 MBps if multiple devices are connected simultaneously (17). On an Intel
RealSense D415 camera using the USB 3.0 interface, this imposes a maximum achievable
resolution of 1280x720 at 30 frames per second for single camera setups, or 840x480 at 30
frames per second per camera for our four camera setup (17).

The internet could also become a bottleneck when attempting to stream a dynamic
point cloud sequence from one host to a remote host, especially when real-time stream-

4

1.1 Background & context

Figure 1.4: Example of high resolution point cloud. This Figure shows a rendering of
a frame of the Loot sequence from the 8iVFB data set. It consists of approximately 793 000
points, and is 17 MB large.

ing is required. Internet transfer speeds vary largely by geographic region, so general
conclusions cannot be easily drawn. However, in 2018 the average broadband download
speed was 59.45 MBps (18), far less than would be required to stream captures from the
aforementioned four camera capture setup or a sequence such as Loot.

Due to this limited bandwidth, trade-offs have to be made between spatial resolution
(the amount of points in each frame), and temporal resolution (the frame rate). Low frame
rate sequences are generally considered to be less pleasant to look at than higher frame
rate sequences (19), and jerkiness is often perceived in them. Thus, simply reducing the
temporal resolution is likely to have a strong negative effect on the Quality of Experience
(QoE) (19).

To palliate having to make such a trade-off, we can leverage temporal interpolation.
Temporal interpolation is a technique to increase the frame rate of a temporal sequence,
which is done by constructing frames in between existing frames. It then becomes possi-
ble to transmit or capture a point cloud sequence at a relatively low frame rate, to then
perform the temporal interpolation on the other end of the channel in order to recon-
struct the desirable frame rate. Such reconstruction can drastically reduce the bandwidth

5

1. INTRODUCTION

requirements of streaming and capturing dynamic point cloud sequences, allowing this
bandwidth to be used for transmitting higher spatial resolution.

Temporal interpolation can also be applied to 2D video, in which case it is sometimes
also referred to as motion interpolation or video frame interpolation (20). Similarly to
temporal interpolation on point clouds, the goal of video frame interpolation is to generate
new frames in between existing frames of a sequence, only for 2D videos instead of dynamic
point clouds. Typically this is done by iterating over all pairs of successive frames, for
each pair creating one or more frames that will fit in between (21). This way, the frame
rate of the source video can be increased by a factor 2 or more, depending on the amount
of frames interpolated between each pair of frames (see to Section 2.3 for more details
on video frame interpolation). Because of the fundamental differences between 2D videos
and dynamic point clouds, existing interpolation techniques cannot easily be extended to
work on dynamic point clouds. In this thesis we will study new techniques, in order to be
able to reap the benefits of temporal interpolation also for dynamic point clouds.

1.2 Problem statement

The goal of the research presented in this thesis is to perform temporal interpolation
of dynamic point clouds. The objective is to generate new frames in between existing
frames in order to increase the frame rate. More formally we can define this problem as
follows: given a pair of frames (fi, fi+2) in a dynamic point cloud, we want to generate the
frame f ′

i+1, keeping motion consistency. If a ground-truth is available, a triplet of frames
(fi, fi+1, fi+2), the algorithm should minimize the distance between the reference frame
fi+1 and the reconstructed frame f ′

i+1. The problem is thus

argminf ′
i+1

D(fi+1, f
′
i+1) (1.1)

where D(pi, pj) is a distance metric that calculates some notion of distance between point
clouds pi and pj . We will discuss various distance metrics that can be used in Section 2.7,
however the intuition is that frames that appear highly similar to a human observer should
be assigned a low distance score, while frames that appear different should be assigned a
high distance score.

Existing 2D interpolation techniques generally rely on the grid structure exhibited by the
video frames, and thus cannot be applied to point clouds, since the points are inherently
unstructured (22). On the other hand, when interpolating point clouds we are free to place
the points at any position (the point do not have to fall on a grid), thus it allows for more

6

1.2 Problem statement

flexibility. In any case, traditional 2D interpolation techniques cannot straightforwardly
be applied to point clouds, and as such new methods have to be researched.

In recent years neural networks have brought about a revolution in the area of computer
vision, and they have now become the dominant approach for almost all recognition and
detection tasks (23). Neural networks have recently also been used for video frame interpo-
lation, which is the task of performing temporal interpolation on 2D videos (21, 24, 25, 26).
In this task they make up also the state-of-the-art. Moreover, neural networks have also
been used with great success in various recognition tasks on point clouds (27, 28, 29,
30, 31). Given all these successes, we aim to utilize neural networks in order to perform
temporal interpolation of dynamic point clouds. This leads us to our first main Research
Objective.

Research Objective 1 Design an architecture capable of performing temporal in-
terpolation on dynamic point clouds.

Such an architecture would take as input a dynamic point cloud sequence, and output
a sequence with a higher frame rate. It would be desirable for this architecture to be
able to process dynamic point clouds of any spatial resolution, that is, with any number
of points. This is challenging for neural networks for two reasons. First, most neural
network architectures used for learning on point clouds scale poorly with number of points,
due to reliance on techniques such as k-nearest neighbour search (29) or farthest-point
sampling (27, 28). Second, certain neural network components might require a static
number of points to be used, and require retraining if the number of points changes.

Research Objective 1.1 Design an architecture that can manage the large and
variable spatial resolution of dynamic point clouds.

Most research efforts of applying deep learning to point clouds so far have been directed
at tasks such as classification (given a point cloud, assign it one out of a set of labels) and
segmentation (assign to each point in a point cloud one out of a set of labels). In such
tasks the input consists of one point cloud. Typically features are learned, which are used
to assign the label(s). Contrarily, in our task the input consists of two point clouds. At
some point in the architecture, information from these two point clouds will have to be
mixed, so that the interpolation result can be generated. We will need to design a neural
network component capable of this.

Research Objective 1.2 Design a neural network component that can combine
information from two temporally sequential point clouds.

7

1. INTRODUCTION

With such a component at hand, the last remaining design challenge is the design of
the neural network architecture itself. Here we need to make decisions such as what
components do we use, how are they connected, how many filters to use, what kernel size,
what activation function, when to apply batch-normalization, and so on.

Research Objective 1.3 Design a neural network architecture capable of perform-
ing temporal interpolation of dynamic point clouds.

Designing the architecture is only half of the challenge, we also need to train it. This
brings us to our second main Research Objective.

Research Objective 2 Train our neural network.

To train our neural network, we will use a supervised training approach. In order to be
able to apply supervised learning, we require two things. First, we need to have a data
set of inputs, labeled with the desired ground truth output. Second, we need to define a
loss function, which describes for every output generated by the network how close it is
to the ground truth output. A low loss function means that the output closely resembles
the ground truth, while a high loss function means that they are vastly different. We then
apply a variant of the gradient descent algorithm, which will attempt to minimize the loss
function by adjusting the weights inside the neural network. The choice of loss function
is critical to the performance of the neural network, because it is this loss function that
decides what we optimize towards, and thus what the network learns.

Research Objective 2.1 Develop a suitable loss function to train a neural network
to perform temporal interpolation of dynamic point clouds.

The stochastic gradient descent (SGD) algorithm which we use to train our neural
network is an iterative algorithm. Repeatedly, we will input data into the network, evaluate
the loss function, and the stochastic gradient descent algorithm will adjust the weights
accordingly. In order for this training process to be successful, it is essential to have a
large training data set. If the training data set is not sufficiently large, it is likely that the
network will overfit, meaning that it will perform good only with the training data set, but
not with other inputs. Convolutional neural networks (which we will be using) are known
to require an especially large amount of training data. The amount of publicly available
dynamic point cloud sequences is currently limited (see Section 2.8), thus becoming an
extra challenge for training our network.

Research Objective 2.2 Train a convolutional neural network despite the limited
availability of dynamic point cloud data sets.

8

1.3 Methodology

1.3 Methodology

We design a neural network architecture that is capable of performing temporal inter-
polation on dynamic point cloud sequences. In order to train this network we require a
large amount of training data. As real-world dynamic point cloud data sets are limited in
availability, we create two synthetic data sets of our own in order to train and evaluate
the network. The first data set is created by applying a series of rigid transformations
to models from the Modelnet data set (32). The second data set is created by applying
animations to models of human bodies. Both these data sets are described in more detail
in Section 4.1. We evaluate our architecture using the data set of human bodies, as this is
the more realistic data set. We split the synthetic data set into a training set, a validation
set, and a test set. We then train the network using the training set and the validation
set, and evaluate its performance on the test set. We compare our results against the
state-of-the-art in temporal interpolation of point clouds. We also compare our results
against the non-interpolated input sequences, in order to analyze the benefit of temporal
interpolation. Lastly, we also conduct a small-scale user study, for a subjective evaluation
of our results.

1.4 Contributions

In order to accomplish the Research Objectives outlined in Section 1.2, this work makes
a number of contributions.

Research Objective 1.1 Design an architecture that can manage the large and
variable spatial resolution of dynamic point clouds.

To be able to perform temporal interpolation of point clouds with a high spatial resolution,
we have devised a downsampling/upsampling scheme. We downsample the input point
clouds to a lower spatial resolution, allowing them to be fed through our interpolation
network. We then upsample the interpolation results back to the original spatial resolution.
This way, we can bypass the poor scaling properties of our interpolation network, and
interpolate even high resolution point clouds.

Research Objective 1.2 Design a neural network component that can combine
information from two temporally sequential point clouds.

We have designed a novel neural network component, called the point matching module.
This module can be used to merge information from two separate point clouds, and can
this way learn correspondence between points across the two point clouds. From this

9

1. INTRODUCTION

correspondence we can make an initial interpolation prediction, which is then refined in
later stages of the neural network.

Research Objective 1.3 Design a neural network architecture capable of perform-
ing temporal interpolation of dynamic point clouds.

In addition to our point matching module, we also design a complete neural network
architecture, that proves to be capable of performing temporal interpolation of dynamic
point clouds.

Research Objective 2.1 Develop a suitable loss function to train a neural network
to perform temporal interpolation of dynamic point clouds.

In this work we examine a number of loss functions to be used to train our neural network.
In particular, we share our experiences with the use of point cloud distortion metrics as
loss functions, and discuss our limited success with them. Additionally, we show that
scene flow L1 loss can be successfully used to train a neural network to perform temporal
interpolation of dynamic point clouds.

Research Objective 2.2 Train a convolutional neural network, despite the limited
availability of dynamic point cloud data sets.

In order to train our neural network, despite the limited availability of public dynamic
point cloud data sets, we have created a novel synthetic data set. This data set has been
created by applying realistic animations to human models. We use this data set to train
and evaluate our architecture.

All in all, we have designed and implemented an architecture that can increase the
frame rate of existing dynamic point cloud sequences by temporally interpolating them.
We have performed a small-scale user study and find that participants on average prefer
the dynamic point cloud sequences interpolated using our architecture over sequences
interpolated by the current state-of-the-art or sequences that have not been interpolated.

1.5 Structure

The remainder of this thesis is structured as follows. In Chapter 2 we discuss the related
work. We first introduce some fundamental concepts and notations related to point clouds
and deep learning. We then proceed to discuss the state-of-the-art solutions for video
frame interpolation, deep learning on point clouds, upsampling point clouds, and scene
flow estimation. We also look into point cloud distance metrics and data sets of dynamic
point clouds that are publicly available. Then, in Chapter 3, we detail the architecture

10

1.5 Structure

of our interpolation system, and the components used in it. In Chapter 4 we describe
the synthetic data sets that we have created, as well as the setup of our experimental
evaluation and its results. In Chapter 5 we share some insights that we have obtained
throughout this project, we discuss the limitations of our work, and we propose a number
of directions in which this work could be extended in the future. Finally, we summarize
the work carried out in this thesis, and conclude.

11

1. INTRODUCTION

12

2

Related Work

In this Chapter we provide an overview of existing research on various subjects closely re-
lated to the problem of temporal interpolation of dynamic point clouds. We first introduce
the basic concepts of static- and dynamic point clouds and their notation in Section 2.1.
In Section 2.2 we provide a brief introduction to deep learning, and we discuss all the
components required in order to design a neural network architecture. After introduc-
ing these basic concepts, we review recent state-of-the-art on various related topics. In
Section 2.3 we discuss a number of solutions to video frame interpolation, the 2D image
equivalent of our temporal interpolation problem. By looking at video frame interpolation
techniques, we can learn the general concepts of temporal interpolation, and gain inspira-
tion for the design of an architecture that can perform temporal interpolation on dynamic
point clouds. Then, in Section 2.4, we review the state-of-the-art of applying machine
learning to point clouds, in order to learn in what ways machine learning algorithms can
be applied to point clouds. In Section 2.5 we discuss a number of works that upsample
point cloud spatially. In these works we can learn about techniques that output point
clouds directly. In Section 2.6 we then look into scene flow, which is the 3D equivalent of
optical flow. Scene flow estimation can be used to perform temporal interpolation, and is
the most closely related state-of-the-art to our work. In Section 2.7 we explore point cloud
distance metrics, which potentially have uses both in training our neural network, as well
as in the evaluation of our results. Lastly, in Section 2.8 we discuss available dynamic
point cloud data sets, which we will need to train and evaluate our architecture.

13

2. RELATED WORK

2.1 Point clouds

Point cloud A point cloud is a set of 3D points, with no ordering relations or spatial

connections among the individual points. To describe point clouds, we adopt a nota-

tion similar to (29). A D-dimensional point cloud with N points can be denoted by

P = {p1, ..., pN} ⊆ RN×D. The most basic point clouds have D = 3, where each point is as-

sociated with its 3D coordinates (spatial attribute), i.e. pi = {xi, yi, zi} with i = [1, ..., N].

Each point, in addition to having a spatial attribute, may also be associated with a number

of other attributes such as color, reflectance or surface normal. Throughout this thesis,

unless specified otherwise, we consider 6-dimensional (D = 6) point clouds that have spa-

tial and color attributes, i.e. pi = {xi, yi, zi, ri, gi, bi} with i = [1, ..., N], where ri, gi and

bi represent the coordinates in the RGB color space.

Dynamic point cloud A dynamic point cloud is a temporal sequence of point clouds,

used to represent time-changing 3D scenes or objects. We denote a D-dimensional dynamic

point cloud with duration L as DP = {P1, ...,PL}, where Pj = {pj1, ..., p
j
Nj
} ⊆ RNj×D is

a point cloud at instant j, with Nj points, j = [1, ..., L]. We will sometimes refer to such

a point cloud Pj part of a dynamic point cloud as a frame. Dynamic point clouds are

captured at a certain capture frame rate, describing how many frames are captured per

second. For simplicity, we will usually assume this capture frame rate to be constant

throughout the sequence. The playback frame rate describes at how many frames per

second the dynamic point cloud is being rendered during playback.

Scene flow Scene flow is the 3D equivalent of optical flow. It describes for each point the

3D motion of that point between two subsequent frames (33). We denote the scene flow

between two dynamic point cloud frames Pi and Pi+1 as Fi→i+1 = {f i→i+1
1 , ..., f i→i+1

N
Pi
}.

We will say that a scene flow estimation is accurate if pij + f i→i+1
j = pi+1

j for all pairs

i = [1, ..., L− 1], j = [1, ...NPi], that is, if the motion is accurately predicted for all points.

We will say that a scene flow estimation is forward-connecting if ∃k ∈ {1, ..., Ni+1} |

pij + f i→i+1
j = pi+1

k for all pairs i = [1, ..., L − 1], j = [1, ..., NPi], that is, if each point

from Pi is mapped to some point in Pi+1. Similarly, we say that a scene flow estimation is

backward-connecting if ∃j ∈ {1, ..., Ni} | pij + f i→i+1
j = pi+1

k for all pairs i = [1, ..., L − 1],

k = [1, ..., NPi+1], that is, if each point from Pi+1 has a point from Pi mapping to it. Lastly,

we will say a scene flow estimation is fully-connecting if it is both forward-connecting and

14

2.1 Point clouds

backward-connecting. Note that if a scene flow estimation is accurate, it is necessarily

also fully-connecting.

Surface normals Surface normals, or simply normals, are vectors that are perpendic-

ular to the modeled object. They earn their name from the fact that their length is

normalized, meaning that only the direction of the vector is relevant, not their magnitude.

Normals are required for a variety of algorithms and distance metrics. Some forms of point

cloud acquisition might output surface normals directly, but in most cases the normals

will have to be estimated using a normal estimation algorithm (34). Figure 2.1 shows an

example point cloud with surface normals rendered.

Voxel grid A voxel grid is a regular three-dimensional grid, where each element is called

a voxel. In a voxel grid, each voxel typically does not explicitly carry its spatial location,

which is instead inferred from the position in the data structure in which it is stored. A

key property of a voxel grid is its resolution, which describes how many voxels it contains

in each dimension. For example, a voxel grid with a resolution of 16×16×16 would contain

16 voxels in each dimension, for a total of 16 ∗ 16 ∗ 16 = 4096 voxels. Voxel grids allow for

fast look-up of elements based on spatial coordinates. They are commonly implemented

through octrees.

Figure 2.1: Example point cloud with surface normals. Here the black lines represent
the surface normals. It can be seen that these normals are always perpendicular to the surface
of the object.

15

2. RELATED WORK

(a) No downsampling (b) Uniform downsampling (c) Voxel downsampling

Figure 2.2: Comparison of downsampling techniques (a) shows the original point
cloud, without any downsampling, (b) shows the result of uniform downsampling, and (c)
shows the result of voxel downsampling. It can be seen that the voxel downsampling has more
informative points.

Octree An octree is a tree where each internal node has precisely 8 children. In each

node, the space is further split up into two equals parts along each dimension, resulting

in 8 equal sized octants. A node at depth k thus covers 2−k times the total space in each

dimension. Note that the tree does not have to be balanced, and as such it is permissible for

one node at a certain depth to have children, while another node at the same depth might

not. This way, the octree does not waste storage space for areas which are unoccupied.

Voxelization Voxelization is the process of converting a point cloud into a voxel grid.

First, a specific voxel grid resolution has to be chosen. Next, all points that fall within

one voxel are aggregated into one point. Common aggregation operators include simply

taking the mean value of all points, or picking one point at random.

Uniform downsampling Uniform downsampling is a technique to reduce the number

of points (downsample) in a point cloud. This is done simply by randomly selecting the

desired number of points. Figure 2.2b shown an example of uniform downsampling.

Voxel downsampling Voxel downsampling is another downsampling technique, that

is similar to the process of voxelization. In the case of voxel downsampling, points are

aggregated just as in voxelization, but are output as a point cloud instead of as a voxel grid.

Compared to uniform downsampling this technique tends to result in more informative

points (points that are not close to other points, and thus present new information).

Figure 2.2c shows an example of voxel downsampling.

16

2.2 Deep learning

kd-tree A kd-tree is a tree-based data structure similar to an octree, which can be used

to store points. In a kd-tree, each internal node has precisely two children. At each

node, the space is split along one dimension, in such a way that both child-nodes cover

approximately the same number of points. kd-trees allow for efficient look up of higher-

dimensional data, and are especially useful for efficient nearest-neighbourhood search.

2.2 Deep learning

Deep learning is a class of machine learning techniques that aims to model complex rela-

tionships between data by learning on multiple levels of representation (23). It creates a

hierarchy of features, where higher-level features can be learned from lower-level features.

It earns its name from creating a deep hierarchy of features, in the form of a neural network

with many layers.

Deep learning has been applied in a wide range of applications, and has drastically

improved the state-of-the-art in many of these. Some applications include image clas-

sification (35, 36, 37, 38), optical character recognition (39, 40, 41), speech recogni-

tion (42, 43, 44, 45), and game agents (46, 47). For a more thorough overview of deep

learning applications, see (48).

A neural network is a network composed of simple elements called neurons. Each neuron

takes a number of input values, and generates an output value based on these input values,

Input layer

Hidden layer 1

Output layer

Hidden layer 2

Figure 2.3: Example neural network architecture. This Figure shows an example of
a simple neural network architecture. Here each circle represents an individual neuron. This
network takes three input values, and produces one output.

17

2. RELATED WORK

some learnable weights, and a learnable bias. A typical neuron might generate its output

value based on the following formula:

g(x) = f(W Tx+ b) (2.1)

Here g(x) is the output of the neuron given an input vector x, W is a vector of weights,

and W T is its transpose vector, b is a bias vector, and f is an activation function. Multiple

such neurons can be organized into a layer, and multiple layers in turn form the network.

Figure 2.3 shows an example of a simple network architecture. In practice, neural networks

consist of vastly more neurons and layers.

In the remainder of this section we discuss a number of components commonly used

in designing network architectures and training them. We discuss convolutional neural

networks in more detail at the end of this Section.

Activation function An activation function is a function that takes a single number and

performs some mathematical operation on it to produce an output. They are applied to

the intermediary output of neurons, as is shown in Equation 2.1. The use of an activation

function has two benefits. First, they help towards bounding the output values to a

finite domain, preventing numbers from becoming increasingly larger as the network grows

deeper. Second, it introduces non-linearity. Intuitively, this allows a neuron to fire or not-

fire, which can help the network learn more complicated features. Figure 2.4 shows a

number of activation functions, ReLU being among the most popular of all. For a deeper

understanding of the benefits of activation functions and the strengths and weaknesses of

particular functions, see (49).

−5 0 5

0

1

(a) Sigmoid
−1 0 1

0

1

(b) ReLU
−1 0 1

0

1

(c) Leaky ReLU

Figure 2.4: Activation functions

18

2.2 Deep learning

Loss function A loss function is a function that assigns a score to the output generated
by the network, describing how far this output is from the desired output. In other words,
it captures the error. If the generated output is identical to the desired output, the loss
function should be 0. The worse the generated output is, the higher the loss function
should be. This loss function is then used by the training algorithm to determine how
well the network is performing, and in which direction the weights in the network should
be adjusted. The loss function is problem dependent, and as such a new loss function has
to be defined for each problem.

Optimizer An optimizer is responsible for adjusting the trainable weights in a network
in such a way that the network achieves high performance in whatever its task is. It
does this by attempting to minimize the loss function. Most modern optimizers are vari-
ations of the stochastic gradient descent (SGD) algorithm (49). Pseudocode for a simple
implementation of SGD is shown in Algorithm 1.

Algorithm 1 Stochastic Gradient Descent
1: procedure SGD(data, learning_rate, loss_fn)
2: weights ← initialize_weights()
3: while not converged AND not maximum iterations reached do
4: batch ← next_batch(data)
5: result ← evaluate(batch, weights)
6: loss ← loss_fn(result)
7: gradients ← calculate_gradients(loss, weights)
8: weights ← weights - gradients × learning_rate
9: end while

10: return weights
11: end procedure

Simply put, some data is fed through the network, the output is evaluated by the loss
function, gradients are then calculated for each weight in each neuron, and lastly these
weights are adjusted based on their gradient and the learning rate. The learning rate thus
determines the magnitude of the adjustments to the weights. Selecting a proper learning
rate is important. Namely, selecting a too low learning rate might mean that training
will take a long time to converge, or that it will become stuck in a local minima, while
picking a too high learning rate might mean that you constantly overshoot the optimal
solution. To this end, more advanced optimizers have been introduced that dynamically

19

2. RELATED WORK

adjust the learning rate, as well as to address other shortcomings of SGD. Example of
such optimizers are SGD+momentum (50), AdaGrad (51), RMSProp (52), or Adam (53).

Dropout Dropout is the act of randomly disabling a portion of the neurons during
training. During each forward- or backward pass all neurons are randomly enabled or
disabled. This technique has been shown to reduce overfitting, as the network is forced
not to rely too much on the output of individual neurons. It also reduces the number
of computations required per pass, though this is offset by the fact that generally more
iterations are required to converge. During inference, all neurons are always used.

Convolutional neural networks

A special variant of neural networks are convolutional neural networks (also known as
CNN or ConvNet). Like any neural network, a CNN consists of an input layer, an output
layer, and a number of hidden layers. The hidden layers of a CNN consist of a series of con-
volutional layers, which are typically interspersed with pooling- and normalization layers.
These convolutional layers are then often followed by some fully connected layers (54).

The parameters of the convolutional layer consist of a set of learnable filters. Each filter
is relatively small in width and height, but covers the full depth of the previous layer.
These filters are moved over the input, and for each position the dot product of that input

4 x 4 x 3

3

20

20

20

20

16

20 x 20 x 1

1× 1× 1

Figure 2.5: 2D convolutional layer example. In this example, the input has the di-
mensions 20 × 20 × 3. Each filter is of the dimensions 4 × 4 × 3. This filter is moved over
each position of the input, and for each position an output value is calculated and stored in
the feature map. One such feature map is highlighted, it has dimensions 20× 20× 1. Notice
that the width and height are identical to these of the input. In this example the output has
dimensions 20× 20× 16, which means that 16 separate filters are used.

20

2.3 Video frame interpolation

patch and the weights of the filter is calculated. The result of this dot product becomes
a value in the output of the layer, called a feature map. The distance the filter moves is
determined by the stride hyper-parameter. Note that if the stride is larger than 1, the
output will be of lower resolution than the input. The input is padded to ensure that the
filter can be centered around each individual input value. For each filter, we will obtain
one feature map, so we can configure the depth of the output by using that many filters.
Figure 2.5 shows an example of a convolutional layer.

After each convolutional layer, the feature maps are typically ran through an activation
layer, for example ReLU, which improves the ability of the network to learn (55). After
one or a number of such convolutional layers, a so-called pooling layer is typically applied.
A pooling layer pools together multiple values into a single value, in order to reduce the
resolution. An example of a commonly used pooling layer is the max-pooling layer, where
the input is divided into fixed-size regions, and the output consists of the maximum value
of each region. The intuition here is that each filter in a convolutional layer will be trained
to detect a certain pattern. If such a pattern is present at any location in a region, the
feature map will contain a high output value for that region, otherwise it will contain a
low output value. Thereby it reduces the resolution of the feature map, and creates an
invariance to small shifts and distortions (23).

2.3 Video frame interpolation

Video frame interpolation is one of the basic video processing techniques, where the goal
is to generate a new frame in between each pair of frames in the input video. This is
most often done by predicting the optical flow, and generating the interpolation results
based on that (56). Estimating the optical flow is a challenging problem in itself, which in
particular has trouble dealing with occlusion, large motion, lack of texture, and blur (57).
As a result, the estimated optical flow is often noisy. The success of deep neural networks
in many computer vision tasks has inspired researchers to explore their use in the task
of frame interpolation. Neural network based approaches now represent that state-of-
the-art in video frame interpolation (56). This success of neural networks in video frame
interpolation has inspired us to use neural networks as part of our architecture for temporal
interpolation of dynamic point clouds. In this section we will discuss some of these state-
of-the-art solutions in video frame interpolation.

Adaptive Separable Convolution (25) This work builds on the prior work on adap-
tive convolution (AdaConv) (26), which we will dicsus first. AdaConv is a convolutional

21

2. RELATED WORK

neural network based approach to perform video frame interpolation. Output pixels are
synthesized simply by performing local convolution over the two input frames. This ap-
proach yields good results when the motion between frames is small, but falls behind when
the motion is larger than the size of the convolution kernels. In the follow-up work, Adap-
tive Separable Convolution (SepConv) (25) 1D kernels are used instead of 2D kernels. This
vastly reduces the number of parameters in the network, while also allowing the network
to handle larger motion, and achieve more visually pleasing frames. The network is able
to deal with occlusion reasonably well, but large motion is still an issue.

Context-aware Synthesis (24) Context-aware Synthesis (CtxSyn) combines context
information, flow estimation, and a synthesis network to perform video frame interpola-
tion. To extract per-pixel context information, the pre-trained image classification network
ResNet (58) is used. Next, PWC-Net (59) is used to estimate the bidirectional optical
flow. A synthesis network consisting of various upsampling-, downsampling-, and con-
volution layers then generates the interpolation result based on the context information
and optical flow. This approach is able to make context-aware decisions, and managed to
achieve state-of-the-art performance.

Super SloMo (21) The interpolation techniques we have discussed so far all focus on
generating one interpolated frame per pair of input frames. Super SloMo takes a different
approach, and focuses on optimizing the interpolation result of videos as a whole. First,
visibility maps are generated, describing for each pixel in what moment in time they
become occluded (if at all). For each pair of input frames the bidirectional optical flow is
then estimated through a flow computation CNN. The bidirectional optical flow needs to
be merged into a single optical flow, which is done by linearly fusing them. The influence
of each optical flow is dependent on the visibility maps (such that occluded pixels have no
influence), as well as the desired moment in time of the interpolated frame. The obtained
initial optical flow estimation is then further refined through a flow interpolation network.
This approach makes the assumption that movement between consecutive frames is linear,
meaning that while performance on already high frame rate input is phenomenal, but on
lower frame rate input performance will degrade.

2.4 Learning on point clouds

Historically, neural networks have most commonly been used to process Euclidean data
(data that follows a grid structure), for example images, text, and video. As a result,
most research efforts have been directed at developing learning techniques that operate

22

2.4 Learning on point clouds

on such Euclidean data. On non-Euclidean data, traditional neural network approaches,

like for example convolution, are not always well-defined. Point clouds do not exhibit a

Euclidean structure, and thus are non-Euclidean. There are two main strategies that can

be employed when attempting to learn on point clouds, 1) convert the point cloud to some

intermediate Euclidean structure, and perform learning on that, or 2) develop learning

operators to learn on non-Euclidean data directly. In this section we will explore a variety

of approaches, that cover both strategies.

It is worth mentioning that most learning efforts on point clouds so far have been

aimed towards classification (given a point cloud, predict to which of a set of classes it

belongs), or segmentation (given a point cloud, segment the points into various categories).

While neither of these resembles our application, many of the applied techniques and

architectures transfer well to different applications, and are thus of interest to us.

2.4.1 2D view-based methods

View-based methods work by generating a set of 2D views of the input point cloud, and

by then applying existing 2D learning techniques to these 2D views. The seminal work

in view-based methods is Multi-View CNN (MVCNN) (30). In MVCNN, 20 views from

different viewpoints are rendered from the input point cloud. For each view, four rotations

are taken (0◦, 90◦, 180◦, and 270◦), and for each of these rotations a shape descriptor is

generated. A special CNN is then used to merge these 80 separate shape descriptors into

one global shape descriptor, from which the final classification prediction is then made.

An advantage of view-based methods is that they can leverage the large body of existing

research in 2D learning techniques to process the rendered 2D views. A challenge is to

decide how many views to generate, and from which viewpoints. If too many views are

generated, this adds overhead and complexity to the model. On the other hand, if an

insufficient number of views is used, or if the wrong viewpoints are used, view-based

methods might have difficulties dealing with occlusion.

In the context of interpolation of dynamic point clouds specifically there is an additional

challenge, namely that we want the output of the interpolation process to be new point

cloud frames. This means that any architecture using a view-based approach, would at

some stage need to synthesize new point clouds based on these 2D views or their derived

features. To avoid the complexity added by this synthesis process, we decide against using

view-based methods in this thesis.

23

2. RELATED WORK

2.4.2 Volumetric methods

Similar to view-based methods, volumetric methods can learn on point cloud data by first
converting the point clouds to an intermediate format. In their case, this intermediate
format is a volumetric representation, for example an occupancy grid, KD-tree or other
structure. Also similar to view-based methods, volumetric methods have the issue that
we would have to convert from the intermediate representation back to point cloud. Addi-
tionally, volumetric methods tend to scale poorly with resolution, which means a relatively
low resolution would have to be used. This can be troublesome for the task of temporal
interpolation, where fine-grained motion plays a crucial role. As a consequence, we decide
against using volumetric-based methods in this thesis. For completeness, we still provide
a brief overview of the state-of-the-art in volumetric methods.

VoxelNet (31) VoxNet was the first architecture to employ a volumetric representation
for point cloud learning. Their approach is simple: the point cloud is converted to an
occupancy grid. An occupancy grid is a 3D grid structure where each point, called a voxel,
gets a value based on all the points that are in it spatially. On this occupancy grid more
conventional neural network approaches can be applied, such as 3D convolution-, pooling-,
and fully connected layers. VoxNet uses stochastic search over hundreds of potential
architectures to find the best performing one. The main benefit of their approach is that
it is simple and allows the use of traditional neural network techniques. A downside is
that the memory requirement of occupancy grids is O(n3) with voxel size, which demands
a relatively low resolution to be used. VoxNet commonly uses a 32 × 32 × 32 resolution,
for example, which depending on the use case may- or may not be sufficient for learning.

PointGrid (60) Another successful volumetric learning method is PointGrid. Similarly
to VoxelNet, PointGrid works with occupancy grids. With PointGrid, however, each cell
in the grid is allowed to have a constant number of points in it, allowing the network to
learn higher order local approximation functions. By allowing multiple points per grid cell,
they find that a grid sizes as small as 16 × 16 are sufficient to obtain good performance.
Due to this smaller grid size, PointGrid achieves significantly smaller memory footprint
than other volumetric methods, while still achieving comparable- or better performance.

Deep kd-networks (61) Kd-networks use kd-trees instead of occupancy grids to more
efficiently represent the points. A kd-tree is a tree where in each node, the data in one
dimension is split into roughly equal-sized parts. When the number of dimensions is
limited, such a tree can be efficiently generated and queried. Unlike occupancy grids,
kd-trees only have to store points that are present in the input, and thus no space is

24

2.4 Learning on point clouds

wasted storing unoccupied regions. Kd-networks achieve better scaling than occupancy
grid-based architectures, but fundamentally still operate by bounding points into groups,
and thus do not use the true neighbourhood of each point.

2.4.3 Geometric deep learning & PointNets

The view-based- and volumetric methods that we have discussed so far learn on point
cloud data by first converting it to a Euclidean representation. Recently there has been
a growing interest in applying learning with neural networks directly on non-Euclidean
data, for example on social networks, sensor networks, and genetics (62). Geometric deep
learning is a class of emerging techniques that apply learning directly on non-Euclidean
data. A subclass of geometric deep learning are PointNets, which focus specifically on
learning on point clouds. In this Section we provide a concise overview of PointNets. For
a more in-depth introduction to geometric deep learning as a whole, we refer the reader
to (62).

Point clouds in particular pose a difficult challenge for neural networks. Namely, the
points in a point cloud are not in a specific order, which means the network needs to
be invariant to any permutation of point order. At the same time, the geometry of the
points and the relation between a point and its neighbours is meaningful, and needs to
be taken into consideration by the network. PointNets are an emerging class of network
architectures designed specifically with these constraints in mind. As we will discuss in
more detail in Chapter 3, we will use a PointNet-style approach in our architecture. We
now first look at the state-of-the-art in PointNets.

PointNet (27) is the pioneer of PointNets, and offers architectures for both classification
and segmentation. PointNet works by first feeding all the input points through a shared
Multilayer Perceptron (MLP), creating a local feature vector for each point. Next, a
symmetric function (for example max pooling) is applied along the first axis, resulting
in a global feature vector that is invariant to the order of the input. In the case of
the classification network this global feature vector is fed through another MLP which
then produces the output scores. In the case of the segmentation network, the global
feature vector is concatenated to each of the points, which are then fed through more
MLPs to generate the output scores. This ensures that the segmentation scores take into
consideration both local features and global features.

PointNet++ (28) is the successor of PointNet. A shortcoming of the original PointNet
architecture is that it does not capture local neighbourhood structure, preventing it from
recognizing fine-grained patterns and generalizing to complex scenes. PointNet++ first

25

2. RELATED WORK

partitions the input sets into overlapping local regions, after which the original Point-
Net architecture is used as a building block to extract features from these local regions.
This process is repeated hierarchically to generate increasingly high-level features. While
PointNet++ achieved state-of-the-art results at the time, it still uses PointNet, which means
points in local regions are still processed independently, and that it does thus not consider
relationships between these points.

Dynamic Graph CNN (DGCNN) (29) is an approach inspired by PointNet and con-
volutional neural networks. It aims to improve performance by taking into consideration
information of the local neighbourhood. It achieves this by first calculating the k-nearest
neighbour graph. That is, for each input point p an edge is drawn to the k nearest points
n1, . . . nk. For each input point p, k feature vectors are generated based on both p and
ni − p, which allows these feature vectors to capture both global shape information (from
p), and local neighbourhood information (from ni − p). Convolution is then applied on
these feature vectors. To make an analogy to traditional 2D convolution: the input point
p corresponds to the central pixel in 2D convolution, and the neighbours correspond to
the patch of pixels around this central pixel. Similarly to PointNet, DGCNN proceeds to
apply a symmetric function to ensure invariance to the order of the input.

PointCNN (63) is another method that directly applies convolutional operators to
point in a point cloud. They perform k-nearest neighbour search, and use Multi-Layer
Perceptrons on the resulting neighbourhood features to learn a transformation χ. This
transformation χ has two functions: it weighs the input features, and it permutes the
input points into a latent and potentially canonical order. After the input points have
been transformed using the learned χ-transformation, convolution can be applied.

2.5 Upscaling point clouds

Little work has been done on upscaling point clouds, and to the best of our knowledge
there is no existing work attempting to increase the frame rate of dynamic point clouds.
In this section we explore a number of works that perform other forms of upscaling, for
example spatial upscaling.

PU-net (64) is a neural network architecture designed to upsample point clouds. That
is, to increase the number of points in the point cloud. The main success criteria for added
points is that 1) they fall on the underlying geometry of the point cloud, and 2) they are
informative, and thus do not cluster around existing points. The PU-net architecture
consists of four phases: 1) splitting the input into patches, 2) learning deep features on

26

2.6 Scene flow

each of these patches, 3) expanding the learned features, and 4) reconstruct points from
these expanded features. PU-net is capable of vastly increasing the density of sparse point
clouds. It is, however, not designed for completion, which means it is not capable of filling
in large gaps or missing parts.

Spatio-temporal Upsampling (65). Low-budget point cloud capture setups often
produce frames that are temporally inconsistent, there might for example be gaps, missing
parts, or other forms of noise. This work aims to alleviate these inconsistencies. To this
end, the authors propose an approach to upsample point cloud sequences in a spatio-
temporally consistent manner. First, Edge Aware Upsampling (66) is applied to a point
cloud at frame j to increase its number of points. At the same time the optical flow is
calculated for frame j based on the 2D input frames. With this optical flow, the upsampled
point cloud from frame j is then projected in time to frame j + 1. Finally, this projected
point cloud is then merged with the actual frame j + 1 in order to produce the output
frame.

2.6 Scene flow

Scene flow is the 3D equivalent of optical flow (33). In the context of point clouds, it
describes for each point the 3D motion of that point throughout a sequence of frames (33).
Scene flow can be used for various applications, for example providing motion cues for 3D
segmentation, action recognition, or camera pose estimation (22). If the motion between
two consecutive frames can be considered to be linear (a reasonable assumption if the
frame rate is sufficiently high), scene flow can also be used directly to obtain good frame
interpolation results.

Until recently, most scene flow estimations were generated by combining the optical flow
estimations from multiple 2D views. Such methods can only be applied when multiple
RGB-D source images are available, which might not always be the case. Additionally,
the optical flow acquisition methods are not optimized for scene flow construction, which
might result in poor scene flow estimations. New research is being carried out to estimate
scene flow directly from point clouds.

Rigid Scene Flow (67) This work focuses on estimating scene flow on point clouds
obtained from 3D LiDAR scans. This is is done by viewing the problem as an energy min-
imization problem, which is then solved using the Levenberg-Marquardt algorithm (68).
The assumption is made that all transformations are rigid, and thus that there is no local
deformation. This assumption holds up, as the work is focused on LiDAR scans, where

27

2. RELATED WORK

the focus might typically be on moving objects such as cars. While the algorithm is also
tested on non-rigid data, there is no convincing comparison to other work.

FlowNet3D (22) FlowNet3D applies a deep learning approach to estimate scene flow
directly on point cloud data. The neural network consists of three important components:
1) a convolution layer adopted from PointNet++ (28) in order to learn point features, 2)
a novel flow embedding layer to merge features from two separate input frames, and 3)
an up-convolution layer to refine the scene flow. The network is trained with synthetic
scene flow ground-truth data, which proves to transfer well to the real-world data from the
KITTI scene flow data set. The model is only evaluated on data featuring rigid motions,
and thus no local deformation.

2.7 Point cloud distance metric

A point cloud distance metric describes how closely two given point clouds resemble each
other, assigning a low score for point clouds that match each other closely, while assigning
a high score for point clouds that differ greatly. In our work such distance metrics play
a crucial role in two ways. Firstly, they can be used as loss function for training our
neural network. Loss functions are used by the training algorithm to determine which
solutions are desirable, and to stir the training process in the right direction. We discuss
loss functions in more detail in Section 3.1.5. Secondly, such distance metrics can be used
to evaluate the performance of our architecture, by comparing interpolation results to the
available ground truths. In this Section we discuss a number of distance metrics and their
merits.

Projection distortion (69) One distance metric to be considered is the projection
distortion. This metric is based on generating a number of 2D rendering of the 3D point
clouds, and comparing these using traditional 2D image distortion metrics, for example
the mean squared error. The difficulty here is in deciding how many views to render, from
what angles, and what rendering technique to use. If the views are selected poorly, this
method is prone to occlusion, and certain points might not be weighed into the score.
The projected distortion has as benefits that it is a relatively simple metrics, and it can
leverage existing research in 2D image distortion metrics. Visual Information Fidelity
(VIF) (70) is a 2D distortion metric that has been shown to have a relatively strong
correlation with perceived visual similarity (71), and is thus a good candidate to use for
projection distortion.

28

2.7 Point cloud distance metric

Point-to-point (matching distortion) (69) The matching distortion, or point-to-
point distortion, is a metric based on matching points from one point cloud to points in
the other point cloud. A typical matching strategy might be to for each point p ∈ P select
a point p̂ ∈ Q which minimizes the Euclidean distance between p and p̂. The one-way mean
squared matching distortion can be calculated by taking the mean squared error between
the matched pairs p and p̂. The symmetric mean squared matching distortion is then the
maximum of the one-way matching distortion from P to Q and the one-way matching
distortion from Q to P . A similar metric is the Hausdorff matching distortion, which can
be found by instead of taking the averages of the squared error as above, taking their
maximum. For a more rigorous definition of the mean matching distortion and Hausdorff
matching distortion, please see (69). An arguable shortcoming of the matching distortion
metric is that it focuses only on closeness of matched points, instead of whether the two
points belong to the same surface. As a result, the matching distortion metric tends to
correlate less with perceived similarity than certain other metrics (71).

Point-to-plane (72) The point-to-plane distortion is a metric similar to the matching
distortion metric. It also matches each point p ∈ P to a point p̂ ∈ Q by minimizing the
Euclidean distance between p and p̂. Instead of simply taking the mean squared error
then, however, the point error is projected along the normal of p, meaning that we only
consider the error in the direction of the normal. As a result, an error across the surface
is not punished, and more focus is put on whether the two point clouds describe the
same surface or not. The point-to-plane metric appears to correlate better to perceived
similarity on human subjects than the matching distortion metric (71). One additional
requirement this metric has, however, is that normals must be known for at least one of
the point clouds. These normals can of course be estimated using one of various normal
estimation techniques (34), should they not be available directly.

Plane-to-plane (73) Another class of distance metrics is that of plane-to-plane. These
metrics are based on angular similarity of the modeled surface. Once again, given two
point clouds P and Q, we find for each point p ∈ P a point p̂ ∈ Q that minimizes that
distance between p and p̂. Then an angular similarity between the normals of p and
p̂ is calculated, which is a measure that describes how much the normals deviate from
each other. These angular similarities are then aggregated across all points, for example
by taking their average. This metric outperforms the point-to-point and point-to-plane
metrics in correlation with perceived similarity on human bodies (71). In order to use
the plane-to-plane metric, normals must be known for both point clouds that are to be
compared.

29

2. RELATED WORK

2.8 Data sets

In order to train our neural network and to perform our evaluation, we require a data set

of dynamic point cloud sequences. Such data sets are currently scarce. The two main data

sets that we have been able to find are hosted by JPEG PLENO. This is an initiative by

the JPEG standardization committee, which aims to provide a standard framework for

capture, representation, and exchange of, among others, point clouds (74). One of the

services they provide is a unrestricted database of point cloud data sets. Of these, two are

dynamic point cloud data sets.

• 8i Voxelized Full Bodies (16) This data set, also known as 8iVFB v2, contains

four dynamic point cloud sequence. Each sequence captures a different human sub-

ject, at 30 FPS over a 10 second period. The point clouds are captured from 42

RGB cameras configured in 14 clusters, capturing the subject from all directions.

Due to post-processing, this data set is very clean; there is no visible noise or arti-

facts. See Table 2.1 for more details about the individual sequences, see Figure 2.6

for previews.

(a) Long Dress (b) Loot (c) Red and Black (d) Soldier

Figure 2.6: 8i Voxelized Full Bodies data set

30

2.8 Data sets

Name Frames Mean points File size

Long Dress 300 834 315 5.8 GB

Loot 300 793 821 5.1 GB

Red and Black 300 727 070 4.8 GB

Soldier 300 1 075 299 7.3 GB

Table 2.1: 8i Voxelized Full Bodies data set. Each sequence lasts 10 seconds at 30 FPS,
for a total of 300 frames. The point clouds are voxelized at a voxel depth of 10, resulting in a
voxel size of approximately 1.75mm per voxel.

• Microsoft Voxelized Upper Bodies (75) This data set contains five dynamic

point cloud sequences of the upper bodies of human subjects. The sequences are

captured using four frontal RGBD cameras, and as such only the front of each subject

is visible. The sequences are captured at 30 FPS, at are between 7- and 10 seconds

each. The data set is offered both at voxel depth 9 and voxel depth 10, corresponding

to a voxel size of 1.5mm and 0.75mm, respectively. There is a reasonable amount of

noise in this data set, especially around the edges of the subjects. See Table 2.2 for

more details about the individual sequences, see Figure 2.7 for previews.

(a) Andrew9 (b) Sarah9 (c) Phil9

(d) David9 (e) Ricardo9

Figure 2.7: Microsoft Voxelized Upper Bodies

31

2. RELATED WORK

Name Frames Mean points File size

Andrew9 318 283 363 1.9 GB

David9 216 349 173 1.5 GB

Phil9 245 332 252 1.7 GB

Ricardo9 216 226 225 1.0 GB

Sarah9 207 259 689 1.1 GB

Table 2.2: Microsoft Voxelized Upper Bodies data set. The point clouds are voxelized
at a voxel depth of 9, resulting in a voxel size of approximately 0.75mm per voxel.

32

3

Architecture

In this Chapter, we discuss the architecture that we have developed in order to perform
temporal interpolation of dynamic point cloud sequences. In Section 3.1 we discuss a
number of architectural decisions that have been made, and we elaborate our approach.
In Section 3.2 we present a high-level overview of our architecture. In the remaining
Sections of this Chapter we discuss various components of our architecture in more detail.

3.1 Architectural decisions

When designing any architecture, a number of architectural decisions have to be made. In
the problem of temporal interpolation of point clouds, these are decisions such as: what
interpolation approach to use, what format the input and output should be in, or what
type of loss function is most suitable. In this Section we discuss the architectural decisions
we have made for this project, and the alternatives that we have considered.

3.1.1 Interpolation approach

We identify two approaches that could be taken to perform the temporal interpolation:

• Frame-by-frame Performing the interpolation frame-by-frame is arguably the sim-
plest method of interpolation. Here frames are interpolated based on information
only from the two surrounding frames. This approach is illustrated in Figure 3.1.

• Sequence as a whole The alternative to frame-by-frame interpolation is to try to
optimize the interpolation of an entire dynamic point cloud sequence as a whole.
This way information not just from the two surrounding frames can be leveraged,
but also information from other frames.

33

3. ARCHITECTURE

f1

⊗

f2

⊗

f3

⊗

f4

f ′

1
f ′

2
f ′

3
f ′

4
f ′

5
f ′

6
f ′

7

Figure 3.1: Frame-by-frame interpolation approach. Here the input sequence consists
of frames f1, f2, f3, and f4. The operator ⊗ represents temporal interpolation. Pairs of
consecutive input frames are interpolated, and the resulting frames are then interwoven with
the input frames, in this case doubling the frame rate of the sequence. Note that it would also
be possible to interpolate more than one frame between each pair of input frames.

One major advantage from the frame-by-frame approach is that it keeps things simple,
which is a welcome benefit to an already challenging problem. With the frame-by-frame
approach, it is likely that a simpler model will be sufficient to properly make use of all
available information. Additionally, we suspect that the training will be easier and require
less training data, as each training pass would only require two or three point clouds
as opposed to an entire dynamic point cloud sequence. An advantage of interpolating
the sequence as a whole is that more information is available, and thus theoretically a
better interpolation could be made, if the model is capable of handling this information.
Ultimately we have decided to employ the frame-by-frame approach, as we believe the
benefits outweigh this theoretical disadvantage.

3.1.2 Input representation

As discussed in Section 2.4, there are various representations that can be used when
applying machine learning on point clouds. Three representations that could be used are
the following:

• View-based One or a number of 2D views are rendered from the point cloud, on
which learning is then performed.

• Volumetric The point cloud is converted to a volumetric representation, such as a
voxel grid, on which learning is then performed.

• Point cloud The point cloud is directly used for learning, without being converted
to an intermediate format.

View-based- and volumetric representations have the advantage that they can leverage
existing deep learning algorithms, as these typically work on data Euclidean data. On

34

3.1 Architectural decisions

the other hand, they each have their own limitations. For example, they might have

difficulties dealing with occlusion, or their computational requirements might scale rapidly

when high spatial resolutions are used. For the task of temporal interpolation, these

representations add the additional challenge that the output has to be converted back to

point clouds, which can be challenging to do in a stable manner. Other characteristics of

these representations are discussed in more detail in Section 2.4.1 and Section 2.4.2.

We opt to create an architecture that can consume point clouds directly. By avoiding

conversion to a different representation, we do not have to worry about concerns such as

converting the output back to point clouds, or the loss of information during conversion.

Additionally, this representation has seen much success in other tasks, such as classification

and segmentation.

A challenge of learning on point clouds directly, is that point clouds do not exhibit a

grid-like structure, their points are in fact completely order independent. This means that

many traditional deep learning techniques cannot be applied, and new techniques have to

be developed.

3.1.3 Input features

There is also the matter of what input features we permit ourselves to use in order to

perform the interpolation. At a minimum, we will be working with 6-dimensional point

clouds, where each point has a 3D spatial location, and RGB color values. Other features,

such as surface normals or especially scene flow are likely not to be available, and thus

should ideally not be required for inference.

For training, the features we can use are dictated by whatever features are available in

the training data set. As we will discuss in Section 4.1, our training data set is extracted

from meshes, meaning that we can generate ground truth surface normal- and scene flow

data. We can thus permit ourselves to use surface normals and scene flow data during the

training process.

3.1.4 Output

Another decision to be made is what data should be output by the architecture, and in

what format. We consider two options:

• Direct point output The architecture directly outputs the interpolated frame(s).

35

3. ARCHITECTURE

• Scene flow The output is the scene flow for each point. Using linear interpolation,
an arbitrary number of interpolated frames can trivially be generated during the
rendering process.

The scene flow approach makes the assumption that the motion between points across
the two frames is approximately linear. Whether this is a fair assumption depends on the
motion of the dynamic point cloud sequence in question. We find that in the sequences of
human bodies that we have experimented with, this assumption of approximate linearity
holds up. However, the direct point output approach does not make this assumption,
and as such could theoretically yield better results when motion between points is not
approximately linear. A downside of the direct point output approach is that it can
only interpolate a predetermined number of frames between each pair of input frames,
and changing this number of interpolated frames will require architectural changes and
retraining of the network. With the scene flow approach, an arbitrary number of frames
can be interpolated trivially. Additionally, the use of scene flow as output allows us to use
a simpler loss function, as we will discuss in Section 3.1.5. We favor the flexibility of the
scene flow output approach, and have thus designed our architecture to output scene flow
estimations.

3.1.5 Loss function

For the loss function, we are again presented with two options:

• Point cloud distance metric The first option is to use point cloud distance met-
rics. Here training would proceed with triplets of consecutive frames (f1, f2, f3),
where the frame f ′

2 = interpolate(f1, f3) would then be compared against the
ground truth frame f2 using a point cloud distance metric.

• Scene flow error If scene flow is chosen as output format (Section 3.1.4), and if
scene flow ground truth data is available, then scene flow error can be used as loss
function. The estimated scene flow would simply be compared against the ground
truth scene flow using existing error measures, such as the L1 norm or L2 norm.

There is a variety of point cloud distance metrics that could be used as loss function (see
Section 2.7). Unfortunately, these metrics have a number of shortcomings when used as
loss function, such as sub-optimal correlation with perceived similarity and lack of smooth
gradient during training. We discuss our experiences with the usage of point cloud distance

36

3.2 High-level architecture

metrics as loss functions in more detail in Section 5.1.6. From early experiments we learned
that scene flow error tends to work better as a loss function, so we use scene flow error
with L2 norm in our final architecture.

3.2 High-level architecture

We outline our architecture, based on the architectural decisions described above. See
Figure 3.2 for a high-level overview of the architecture. As input we take two 6-dimensional
point clouds, pc1 and pc2, each having spatial position- and color information. As the
interpolation network uses nearest-neighbour search, and thus scales O(n2) with n points
in computation time, we can only feed it point clouds of limited spatial resolution. For
this reason, we first downsample pc1 and pc2 to 2048 points each (Section 3.3). The
interpolation network then takes these two downsampled point clouds, and estimates the
corresponding scene flow (Section 3.4). Next, we upsample this scene flow estimation back
up to the original resolution using 3d interpolation (Section 3.5). Lastly, we apply our
neighbour snapping algorithm to increase the smoothness of the scene flow estimation
(Section 3.6).

pc1 pc2

downsampling downsampling

neighbour

snapping

2048× 6 2048× 6

n1 × 6 n2 × 6

2048× 9

n1 × 9

out

n1 × 9
upsampling

interpolation network

Figure 3.2: High-level architecture

3.3 Downsampling

We will first downsample the input point clouds to a lower spatial resolution. This is
necessary because 1) the computational time and memory requirement of our interpolation

37

3. ARCHITECTURE

network scales O(n2) with n input points, and as such cannot process large point clouds in

reasonable time, and because 2) the interpolation network requires that all inputs have the

same spatial resolution. Based on empirical testing, we have decided to downsample all

inputs to a spatial resolution of 2048 points. We find that this resolution is small enough

that computation is fast, yet large enough to describe the geometry with sufficient detail.

In Section 2.1 we already discussed the uniform- and voxel downsampling techniques.

While voxel downsampling might result in more informative point clouds, it has the prob-

lem that the number of output points is not easily configurable, as this is dependent on the

voxel size used. In our experience, a spatial resolution of 2048 points is large enough that

uniform downsampling provides reasonably informative point clouds. For these reasons,

we will apply uniform downsampling.

3.4 Interpolation network

The interpolation network is the central part of our architecture. It is the component that

takes as input two point clouds, and estimates their scene flow. As shown in Figure 3.3,

our interpolation network consists of two modules. The first module is the point matching

module (Section 3.4.1). Given two point clouds pc1 and pc2, this module will learn a soft-

mapping from the points in pc1 to points in pc2. The second module is the flow refinement

module (Section 3.4.2). This module will further refine the output of the point matching

module.

pc1 pc2

n1 × 6 n2 × 6

n1 × 9 n1 × 9

loss1 loss2

outflow

refinement

point

matching

loss loss

Figure 3.3: Neural network architecture

From early experimentation we have learned that end-to-end training does not achieve

good results on this architecture. We speculate that this was because the flow refinement

layer is encouraged to be highly conservative in its scene flow estimation, that is, to always

38

3.4 Interpolation network

predict no- or low motion, and that this kills the gradient, preventing the point matching
layer from learning properly.

To remedy this issue, we employ a two-phase training approach. First, we train only the
weights of the point matching layer, based only on the output from the point matching
layer (loss1 in Figure 3.3). Once the network has sufficiently learned how to perform
the point matching, we move on to the second phase. In this second phase, we freeze the
weights in the point matching layer, preventing its weights from being changed during the
remainder of the training process. We then train the flow refinement layer to convergence
(based on loss2 in Figure 3.3).

3.4.1 Point matching

Our point matching module takes as input two point clouds, P = {p1, ..., pNp} and Q =

{q1, ..., qNq}, and learns a soft mapping between points from P to points from Q. That is,
it learns a weight wi,j for all pairs i ∈ {1, ..., Np} and j ∈ {1, ..., Nq}, where weight wi,j

describes how much point pi is matched to point qj . We impose that ∀i ∈ {1, ..., Np} |∑Nq

j=0wi,j = 1. From these weights, we calculate our first scene flow estimation S according
to Equation 3.1. In other words, each weight wi,j describes how much point pi ∈ P should
be moved in the direction of point qj ∈ Q.

S←
{ Nq∑

j=1

wi,j ∗ (qj − pi)

}Np

i=1

(3.1)

To learn these weights, we employ the architecture shown in Figure 3.4. First, we
find for each point p in pc1 the k-nearest neighbours, where k is a hyper-parameter.
Higher values of k mean more neighbours have to be considered, and thus require more
computation. Lower values of k mean smaller neighbourhoods, making it less likely that
the true semantically corresponding point is in this neighbourhood, in which case the
network can likely not make a good scene flow estimation. After empirical testing we
use the value k = 50. We discuss the implications of this parameter in more detail in
Section 5.1.5. For each neighbour pn we now derive the features {p, pn, pn − p}. The
features p and pn provide information about the absolute position of the points. The
feature pn − p (referred to as neighbour flow in Figure 3.4) provides information about
the relative position of the neighbouring points. These features are fed through multiple
Multilayer Perceptrons (MLP), which is where the actual learning takes place. In the last
MLP layer, we use only a single filter, in order to obtain an output of dimensions n1×k×1,

39

3. ARCHITECTURE

or simply n1× k. We normalize the sum of outputs to 1 for each base point, and then use

these values as weight w to derive the estimated scene flow as described in Equation 3.1.

pc1 pc2

k-nearest

neighbour

n1 × 6 n2 × 6

neighbour flow

n1 × k × 3

neighbour features

n1 × k × 9

n1 × k

normalize summatmul
n1 × kn1 × 9

out

MLP

{128, 128, 64, 1}

Figure 3.4: Point matching module architecture

3.4.2 Flow refinement

Our flow refinement layer takes as input one point cloud P = {p1, ..., pNp} with scene

flow estimation S = {s1, ..., sNp}, and will attempt to refine this scene flow estimation.

Similarly to our point matching layer, it does this by learning a set of weights, where

weight wi,j describes how much the refined scene flow estimation of point pi will depend

on the original scene flow estimation sj . The refined scene flow estimation S′ is then

calculated according to Equation 3.2.

S′ ←
{ Np∑

j=1

wi,j ∗ sj
}Np

i=1

(3.2)

The architecture of the flow refinement module is shown in Figure 3.5. First, we apply

EdgeConv (29) in order to learn high-level features for each scene flow estimation. As

explained briefly in Section 2.4.3, EdgeConv works by applying convolution to features

from a local neighbourhood of points. The intention is that this will allow the module

to learn how to detect- and correct outliers. After the EdgeConv layer, we apply another

couple MLP. Similarly to the point matching module, we then normalize the sum of outputs

to 1 for each base point and use these values as weight w, and calculate the refined scene

flow as described in Equation 3.2.

40

3.5 Upsampling

S

k-nearest
neighbour

n1 × 9

n1 × k
matmul

n1 × k

n1 × 9

out

neighbour features/flow
n1 × k × 12 MLP

{128, 64, 64}
n1 × k × 64

pooling

EdgeConv

n1 × 64

repeatnormalize
sum

MLP
{128, 64, 64, 1}

n1 × k × 64

Figure 3.5: Flow refinement module architecture The blue-shaded area represents the
EdgeConv module from the Dynamic Graph CNN architecture (29), which is used to learn
features.

3.5 Upsampling

Our architecture so far is capable of estimating scene flow, but due to O(n2) scaling can

only do so at relatively low spatial resolution. As discussed in Section 3.3, we there-

for downsample the input point clouds to a spatial resolution of 2048 points. In order

to obtain a high resolution scene flow estimation, we will thus need to upsample back

our low resolution estimation. We do this through 3D interpolation (28). Given a high

resolution point cloud P = {p1, ..., pNp}, the downsampled low resolution point cloud

P′ = {p′1, ..., p′Np′
}, and the low resolution scene flow estimation S′ = {s′1, ..., s′Np′

}, we

calculate the upsampled scene flow estimation S as described in Equation 3.3. Here w is

a normalized inverse-distance weight function, assigning higher weights to points that are

closer.

S←
{ ∑

p′j∈knn(pi)

w(pi, p
′
j) ∗ s′j

}Np

i=1

(3.3)

In other words, to obtain the scene flow estimation for some point pi ∈ P, we take

a weighted average of the scene flow estimations of all points from P′ that are in the

k-nearest neighbourhood of pi, assigning higher weights to points that are closer to pi.

Figure 3.6 shows an example of this upsampling.

41

3. ARCHITECTURE

a b

c

d

p

Figure 3.6: Example of flow upsampling In this Figure we illustrate how the upsampling
of the point p might occur when using k = 3. The solid arrows represent that low resolution
scene flow estimations, the dashed arrow the scene flow estimation resulting from the 3D
interpolation. Here points a, b, and c fall in the 3-nearest neighbourhood of p, and will thus
be considered for the interpolation, while point d falls outside of the neighbourhood, and will
not be considered. As point b is closest to p, it will have the largest influence on the final
estimated scene flow for p. Point a and c are both approximately as far away from p, and will
thus have approximately equal influence, but less than point b.

3.6 Neighbour snapping

Our architecture so far already outputs an estimated scene flow for the input points clouds,

which can be used to perform the temporal interpolation. One shortcoming of this esti-

mated scene flow is that in almost all cases it is not fully-connecting (for definition, see

Section 2.1). An example of such a non-connecting scene flow estimation can be seen in

Figure 3.8a.

When used for temporal interpolation, this non-connectingness of the scene flow esti-

mation can have negative effects on the quality of the produced output sequence. The

problem occurs between a last interpolated frame and the subsequent source frame. If the

T1 T2 T3 T4 T5

Figure 3.7: Necessity of neighbour snapping This Figure shows the position of a point
(vertical axis) over time (horizontal axis). T1 and T5 are source frames, while T2, T3, and T4

are interpolated frames. The dashed black point shows the prediction based on the estimated
scene flow at T5. The dashed line shows the ground truth scene flow. The motion between T4

and T5 is drastically different from the motion between prior frames.

42

3.6 Neighbour snapping

scene flow is not fully-connecting, the motion between these two frames might significantly
deviate from the motion over the last few frames, which in our experience is noticeable
during viewing, and might be perceived as choppy and not smooth. We illustrate an
example of this behavior in Figure 3.7.

To lessen this issue, we propose neighbour snapping, a technique that makes an exist-
ing scene flow estimation fully-connecting, in order to provide more smoothness in the
temporal interpolation. The pseudo-code of the algorithm is shown in Algorithm 2.

Neighbour snapping works as follows. Assume two point clouds Pi and Pi+1 and their
estimated scene flow Fi→i+1. To achieve forward-connectingness, we find for each point in
Pi the point in Pi+1 closest to its scene flow target location, and let that point be the new
scene flow target location. This happens on Line 2-6 in Algorithm 2. In order to ensure
backward-connectingness, we find all points in Pi+1 that are not backward-connecting yet,
and we change their spatial location to that of the nearest point in Pi. The scene flow for
these points is adjusted accordingly so that the target location remains the same. These
adjustments happen on Line 7-11 in Algorithm 2.

Figure 3.8 shows an example of how neighbour snapping can make an existing scene
flow estimation fully-connecting. In 3.8a none of the points are forward- or backward
connecting. By applying Algorithm 2, all points are now fully-connecting. Notice that
some points might be mapped inconsistently in regard to their ground truth, as happens
to the middle point in Figure 3.8b at T2. This inconsistency is in our experience not
noticeable, and will be quickly corrected in future frames. On the other hand, the increased

Algorithm 2 Neighbour snapping
1: procedure snap(pc1, pc2)
2: for point p1 in pc1 do
3: target ← p1.xyz + p1.sceneflow
4: target_nn ← nearest_neighbour(pc2, target)
5: p1.sceneflow ← target_nn.xyz − p1.xyz
6: end for
7: for point p2 in pc2 do
8: nn ← nearest_backward_connecting_neighbour(pc2, p2)
9: p2.sceneflow ← p2.xyz + p2.sceneflow − nn.xyz

10: p2.xyz ← nn.xyz
11: end for
12: end procedure

43

3. ARCHITECTURE

smoothness is in our experience highly noticeable, as points no longer appear to be jumping
all over the place.

T1 T2 T3

(a) Without neighbour snapping
T1 T3T2T1 T3T2

(b) With neighbour snapping

Figure 3.8: Neighbour snapping These Figures show the position of a number of points
(vertical axis) over time (horizontal axis). Specifically, (a) shows a scene flow estimation that is
not fully-connecting, while (b) shows the same scene flow estimation after neighbour snapping
has been applied.

44

4

Results

In this Chapter we evaluate the performance of our interpolation architecture. To this
end, we first introduce in Section 4.1 a data set we have created for training and evaluation
of our architecture. In Section 4.2 we present our results, in the form of visual results,
objective metrics, and a small-scale user study. In Section 4.3 we then proceed to further
analyze these results.

4.1 Data sets

In order to train- and evaluate our network, we require a sufficiently large data set. It
is well known that convolutional neural networks in particular demand a vast amount of
training data during the training process. In Section 2.8 we have taken a brief look at
available dynamic point cloud data sets. Unfortunately, these publicly available data sets
are small in size, and they would not be sufficient to train our network to a point where
it would achieve satisfactory results on unseen data. For this reason, we have created two
synthetic data sets. The first data set consists of a series of rigid transformations on models
from the Modelnet40 (32) data set, the second data set consists of a series of animated
human bodies, generated from meshes obtained from Adobe Mixamo (76). Apart from
the size, another great benefit of these synthetic data sets is that we can extract ground
truth surface normals and scene flow, which will be used extensively both for training our
network and for evaluating our results.

• Synthetic - Rigid This data set is based on the Modelnet40 (32) data set. Mod-
elnet40 does not contain any color data, so we first add color values to each point
based on its spatial coordinates. Next, we apply a series of rigid transformations to

45

4. RESULTS

(a) Single frame (b) Triple

Figure 4.1: Synthetic - Rigid data set Figure (a) shows one frame of an airplane. (b)
shows a triple generated for training. In this figure each frame has been colored uniformly for
illustrative purposes, in the data it has similar colors to the model shown in (a).

each object, resulting in an animation. Each transformation has a number of pa-
rameters controlling the magnitude and speed of the transformation. For each such
parameter we specify a minimum- and a maximum value. We then randomly se-
lect a model from the Modelnet40 data set, randomly sample parameters within the
specified ranges, and then use these to create a triplet of three consecutive dynamic
point cloud frames. In Table 4.1 we provide an overview of the used transformations
and their parameters. These used ranges have been empirically selected. Note that
since we train using scene flow error as loss function, we only need to use two frames
of the triplet. When using point cloud distortion metrics as loss function, all three
frames are required.

• Synthetic - Human This data set consists of animated human bodies. For the
creation of this data set we use the online service Mixamo (76). In Mixamo you
can select one of a number default character models (or upload your own), and
apply one of the many available animations. Next we use Blender (77) to render
the animations, providing us with one mesh per frame. Finally, we convert these
meshes to point clouds by randomly sampling points from the faces of the mesh. For
instructions on how to use our data set, refer to our Github repository. For more
details on how the data set was created, see Appendix A. Figure 4.2 shows a number
of example frames from this data set. The training data set consists of 5 models,
each having 12 animations applied them, for a total of 60 sequences. The test data
set contains an additional 8 sequences. Each sequence ranges in length from 30 to
250 frames. In total the data set consists of 10 590 frames.

46

https://github.com/jelmr/pc_temporal_interpolation

4.1 Data sets

Parameter Description Min Max

CIRCLE_RADIUS radius of the translation spiral. 0.7 2.0

CIRCLE_HEIGHT height gained when one translation spiral is finished. 2.0 5.0

FRAMES_PER_CIRCLE frames it takes to complete one translation spiral. 50 80

FRAMES_PER_ROTATION_X frames per full rotation on X-axis. 50 80

FRAMES_PER_ROTATION_Y frames per full rotation on Y-axis. 50 80

FRAMES_PER_ROTATION_Z frames per full rotation on Z-axis. 50 80

FRAMES_PER_SHRINK frames to perform one shrink cycle. 50 80

SHRINK_FACTOR maximum shrink factor during a shrink cycle. 1.3 2.2

FRAME_INDEX independently sampled for each transformation. 0 360

Table 4.1: Synthetic - Rigid parameters This table shows the parameters that are used
to generate our Synthetic - Rigid data set. For each parameter a value is randomly sampled
between the Min. and Max. value. In the case of FRAME_INDEX, a new value is sampled for
each transformation.

(a) Remy (b) Regina (c) Stefani

Figure 4.2: Synthetic - Human data set examples.

Data augmentation

In order to further increase the size and diversity of training set, we apply data augmen-
tation. For the augmentation operations Flip, Rotation, and Scale we randomly sample

47

4. RESULTS

one set of parameters per frame pair, and then apply these operations with the same pa-
rameter to each of the two frames in the triple. The Shuffle and Subsample operations
are independently applied to each individual frame.

• Flip With a probability 0.5 we flip the point clouds horizontally. With an indepen-
dent probability 0.5 we flip the point clouds vertically.

• Rotation For all three axes we uniformly sample a degree between 0◦ and 360◦, and
rotate the point clouds with these degrees.

• Scale We randomly sample a scale factor between 0.9 and 1.1, and scale the point
clouds with this factor.

• Shuffle We shuffle the order of the points in the point cloud randomly.

• Subsample We randomly sample down each point cloud to the desired number of
points.

4.2 Evaluation

In this Section we present an evaluation of our architecture. In Section 4.2.1 we discuss
our software implementation and the hardware that we used. In Section 4.2.2 we proceed
to detail our training process and the training metrics that we monitored during training.
In Section 4.2.3 we show the runtime performance of the system. We then evaluate the
qualitative performance of our architecture in a number of ways. In Section 4.2.4 we give
a visual demonstration of the output of our architecture. In Section 4.2.5 we evaluate our
architecture using a number of objective metrics. Lastly, in Section 4.2.6 we discuss the
results of a small-scale user study that we have carried out.

4.2.1 Implementation

We have implemented our architecture in Python using the Tensorflow (78) framework.
Our implementation is publicly available on Github at https://github.com/jelmr/pc_

temporal_interpolation. It contains modules for training, evaluation and inference.
For more information on how to run the architecture, please see the README file in this
repository. Additionally, instructions are included for how to recreate our data set. All
experiments in this Chapter have been carried out on machine equipped with an Intel
i7-7800X CPU running at 3.50 GHz, 16GB RAM, and an NVIDIA GeForce RTX 2080 Ti.

48

https://github.com/jelmr/pc_temporal_interpolation
https://github.com/jelmr/pc_temporal_interpolation

4.2 Evaluation

4.2.2 Training

As detailed in Section 3.4, we train our network in two phases. First we only train our

point matching layer. In the second phase we freeze the weights from the point matching

layer, and train the flow refinement module. Figure 4.3 shows the training metrics for

the first phase of the training process, based on the output of the point matching layer.

Figure 4.4 shows these metrics for the second phase, based on the output of the flow

refinement layer. The model is trained on the Synthetic Human data set (see Section 4.1).

This data set consists of 10522 pairs of frames. We split the data set in training, validation

and test sets. The training set (8152 of pairs) is used to fit the model. The validation set

(500 pairs) is used to monitor the performance of network during training. Lastly, the test

set (1870 pairs) is used to generate the results we present in this Section. For the test set

we only use models and animations that are not present in the training- or validation set.

(a) Accuracy (5%) (b) Accuracy (10%)

(c) End point error (d) Loss

Figure 4.3: Training metrics for phase 1 This Figure shows objective metrics during
the first phase of training (training the point matching module). All metrics are calculated
over the validation set, except for the blue line in (d), which is calculated over the training
set itself. End point error is the L2 distance between the ground truth- and estimated scene
flow. The accuracy is the portion of points for which the end point error is below a certain
percentage of the ground truth scene flow.

49

4. RESULTS

(a) Accuracy (5%) (b) Accuracy (10%)

(c) End point error (d) Loss

Figure 4.4: Training metrics for phase 2 This Figure shows objective during the second
phase of training (training the flow refinement module). See Figure 4.3 for an explanation of
the metrics.

4.2.3 Runtime performance

Table 4.2 shows the runtime performance of various stages of our architecture.

Stage Run time Frame rate

Downsample 1.92× 10−4s 5.21× 103

Interpolation network 6.55× 10−2s 15.3

Upsample 0.520s 1.92

Neighbour snapping 0.266s 3.76

Table 4.2: Runtime performance This table shows the runtime for various stages of the
architecture. For stages that process data in batches, this batch processing time is amortized
over the individual frames. The frame rate considers how many frames could be processed per
second if the entire machine was dedicated to that stage only.

50

4.2 Evaluation

0* 1 2* 3 4* 5 6* 7

8* 9 10* 11 12* 13 14* 15

16* 17 18* 19 20* 21 22* 23

Figure 4.5: Example of interpolated sequence. This Figure shows an example of a
dynamic point cloud that has been interpolated using our architecture. Frames marked with
an asterisk are the original input frames, unmarked frames have been interpolated by our
architecture.

4.2.4 Visual results

In this Section we give a visual demonstration of the interpolation results of our architec-
ture. Video demonstrations can be found on our Github repository. Figure 4.5 shows a
short sequence from our evaluation set that has been interpolated using our architecture.
Because it can be hard to spot small motions in a sequence like this, we have only interpo-
lated one frame in between each pair of frames. Our Github page contains a video of the
same sequence, where in between each pair of frames, 5 new frames have been generated.

It can be hard to compare the motion across the separate frames in Figure 4.5. To make
comparison easier, we have in Figure 4.6 overlapped two source frames together with the
resulting interpolated frame. It can be seen that in these frames, the interpolated frame
falls nicely in between the two surrounding frames, which is the desired result.

51

https://github.com/jelmr/pc_temporal_interpolation
https://github.com/jelmr/pc_temporal_interpolation

4. RESULTS

(a) Full

(b) Close-up 1

(c) Close-up 2

Figure 4.6: Interpolated frame comparison (a) shows an example of an interpolated
frame compared to the two source frames. Each frame has been colored uniformly, with source
frame 1 being blue, source frame 2 being green, and the interpolated frame being orange. (b)
and (c) shows close-ups of high motion areas of the same frames (at different angles).

In Figure 4.7 we show an alternative visualization of the scene flow estimation generated
by our architecture. In Figure 4.7a and Figure 4.7b we use a color mapping to visualize
the scene flow both for our interpolation result and for the ground truth. In Figure 4.7c
we show the error between the interpolated result and the ground truth using a heatmap.
In this Figure, only one frame is shown. Figure 4.8 shows the scene flow error for a short
sequence of frames. Lastly, a video showing this visualization for an entire sequence can
be found on our Github page.

As can be seen in these Figures, the largest scene flow estimation errors seem to occur
mostly in the hands and feet. These regions are also the regions where the largest motion
occurs in the sequences we use. This suggests there might be a correlation between motion
distance and scene flow error.

52

4.2 Evaluation

(a) Interpolation (b) Ground truth (c) Error

Figure 4.7: Scene flow visualization (a) and (b) show scene flow of the interpolation
generated by our architecture and the ground truth, respectively. In these Figures, the direc-
tion of the scene flow is shown through a color coding. A scene flow indicating no motion is
represented using a gray color. Motion in x-, y-, and z-axis are then mapped to variation in
red-, green- and blue color spectrum, respectively. Thus, if two points have a similar color,
that means they are moving in a similar direction, allowing for easy visual comparison of the
scene flow estimation. Larger motions correspond to brighter- or darker colors. (c) shows the
error between the interpolation result and ground truth. Here error ranges from black (no
error), through purple (small error), through bright yellow (large error). ‘Large error’ is here
defined as being equal or larger to 50% of the largest ground truth motion throughout the
sequence.

4.2.5 Objective metrics

For a more objective evaluation, we also assess our architecture using a number of objective
metrics. We use the following metrics:

• EPE: The end point error (EPE) is the average L2 distance between the estimated-
and ground truth scene flow in centimeters. Lower is better.

• Accuracy The accuracy is the portion of points for which the end point error is less
than a certain threshold. We report accuracy for 0.5, 1.0, and 2.0 cm. Accuracy
ranges from 0.0 to 1.0, with a higher score being better.

53

4. RESULTS

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

Figure 4.8: Error of interpolated sequence. Each frames shows the scene flow error
between our interpolation result and ground truth. Error is indicated through a heatmap,
ranging from black no error), through purple (small error), through bright yellow(large error).
To improve visibility, in this Figure ‘large error’ is defined as being equal or larger to 25% of
the largest ground truth motion throughout the sequence.

• po2point_xyz_PSNR: The peak signal-to-noise ratio (PSNR) of the spatial compo-

nent (xyz) of the point-to-point distortion metric (see Section 2.7). A higher score

means the estimation is closer to the ground truth, and is thus better.

• po2point_rgb_PSNR: Same as po2point_xyz_PSNR, but this is the color component

of the point-to-point distortion metric.

• po2plane_PSNR: The peak signal-to-noise ratio (PSNR) of the point-to-plane distor-

tion metric (see Section 2.7). Note that this metric only considers spatial similarity,

and does not factor in color in any way. A higher score means the estimation is

closer to the ground truth, and is thus better.

54

4.2 Evaluation

• VIF (projection): This is the projected distortion calculated using the VIF dis-
tortion metric (see Section 2.7). It ranges from 0.0 to 1.0. Again, a higher score is
better.

In all cases, the metrics are calculated by comparison against ground truth. We show
results for the following algorithms:

• Ours (snap): The output of our full architecture, including neighbour snapping.

• Ours (no snap): The output of our architecture but without applying neighbour
snapping.

• Flownet3D (snap): The Flownet3D (22) architecture. The network has been
retrained using our synthetic data set (the same data set that is used to train our own
architecture). For the high resolution evaluation data set, we find that Flownet3D
cannot process the large point clouds in reasonable time, and thus take the following
approach: we use our full architecture, but replace our own interpolation network
with Flownet3D. This means Flownet3D takes as input point clouds downsampled to
2048 points, and the generated output is then upsampled, and neighbour snapping
is applied.

• No interpolation: No interpolation is performed. For the metrics based on scene
flow, the scene flow estimation is set to 0. For the other metrics, instead of generating
an interpolated frame, the last input frame is simply used.

As evaluation set, we use 8 sequences from our synthetic data set. These sequences
consist of 8 unique animation applied to 2 different models. None of the models or anima-
tions in the evaluation set are used in the training- or test set during the training process.
We show the results both for the high resolution version of the data set (100k points,
Table 4.3), and the low resolution downsampled version (2048 points, Table 4.4). For each
pair of input frames we interpolate 4 frames. For each frame we then calculate the metric
values, and average these out over all frames to get to the values reported in Tables 4.3
and 4.4. For the low resolution version, down- and upsampling is not required, so Ours

is simply our interpolation network, and Flownet3D is simply the original Flownet3D ar-
chitecture, without any upsampling or neighbour snapping. We do not report the VIF
projection metric for the low resolution version, due to the difficulty of making informative
projections of point clouds that are of this low resolution.

55

4. RESULTS

Metric Ours (no snap) Ours (snap) Flownet3D (snap) No interpolation

EPE 1.533 1.607 2.353 1.294

Accuracy (0.5 cm) 0.323 0.287 0.084 0.351

Accuracy (1.0 cm) 0.522 0.493 0.205 0.546

Accuracy (2.0 cm) 0.753 0.738 0.500 0.806

po2point_xyz_PSNR 58.35 58.56 56.01 56.18

po2point_rgb_PSNR 73.75 73.72 71.57 74.93

po2plane_PSNR 104.75 106.7 136.5 94.19

VIF (projection) 0.809 0.838 0.745 0.710

Table 4.3: Objective metrics (100k points)

Metric Ours Flownet3D No interpolation

EPE 2.584 2.986 2.579

Accuracy (0.5 cm) 0.202 0.145 0.243

Accuracy (1.0 cm) 0.336 0.290 0.348

Accuracy (2.0 cm) 0.566 0.505 0.548

po2point_xyz_PSNR 53.03 47.64 48.07

po2point_rgb_PSNR 81.81 76.25 76.42

po2plane_PSNR 90.73 80.84 80.32

Table 4.4: Objective metrics (2048 points)

4.2.6 User study

In order to get a subjective evaluation of our results, we conduct a small-scale user study
(n = 8). In the study we asked participants to rate the quality of the motion of a number
of pre-rendered dynamic point cloud sequences. All videos we used can be found on our
Github page. In this Section we first discuss the setup of this user study, then we present
the results.

User study setup For this study we prepared 36 pre-rendered dynamic point cloud
sequences. The sequences are divided equally into four categories:

56

https://github.com/jelmr/pc_temporal_interpolation

4.2 Evaluation

• Ground truth: The original sequence at high frame rate (48 FPS).

• Low FPS: The original sequence at a low frame rate (8 FPS).

• Ours (interpolated): The result of our architecture after interpolating the low
frame rate sequence (48 FPS).

• Flownet3D (interpolated): The result of the Flownet3D (22) architecture, with
our upsampling and neighbour snapping applied in order to get back high resolution
point clouds (48 FPS).

Participants are handed three forms. The first form is an Informed Consent Form
(Appendix B.1). The sheet explains briefly the goal of the experiment and the procedure,
and asks participants to give their consent. The second form is the Participant Information
Form (Appendix B.2). In this form we ask the participant for their age, and whether they
have any prior experience in visual quality evaluations. The last form is the Video Rating
Form (Appendix B.3), on which the participants can fill in their rating for each sequence.

Participants are first asked to fill in and sign the Informed Consent- and Participant
Information Forms. Participants are then put in front of a laptop, where we start the
demonstration session. Using a simple interface (Appendix B.4, Figure B.1a) the users
are shown four short video clips, one of each category. The goal of this demonstration
is to make the user familiar with the viewing interface, and to give them an idea what
the range of quality is between different sequences. After the demonstration we move
on to the video rating session, where each participant rates the remaining 32 sequences.
Participants are asked to rate the quality of the motion on the Video Rating Form between
1 (terrible) and 7 (excellent). We instruct the participants to try and not factor in the
quality of the model and textures itself, but only the quality of the motion. Using a similar
interface (Appendix B.4, Figure B.1b), the users are shown the remaining 32 sequences in
a randomized order. Whenever one sequence finishes playing, the next sequence is loaded,
but paused. There is thus no opportunity to watch a sequence more than once (we are
interested in their first impression). Once the participant has rated a sequence, they can
press the play button to start the next sequence. Once all 32 sequences have been rated
this way, the experiment is concluded.

User study results We now present the results of the user study that we conducted.
In Figure 4.9 and Figure 4.10 we show the distribution of ratings given by participants.

57

4. RESULTS

In Figure 4.11 and Figure 4.12 we compare the ratings given for the four variants of each
sequence. We further analyze and interpret these results in Section 4.3.

Sa
mba Fig

ht

Ye
llin

g

Lo
ok

ing
Arou

nd Roar

Wave
Dan

ce

Hip
Hop

Dan
cin

g

Grou
nd

tru
th

Ours

Lo
w

FP
S

Flo
wnet

3D

6.6 6.4 5.9 5 5.8 5.5 5.8 5.4

5.4 4.5 5.1 4.6 4 3.9 3.5 3.8

3.5 3.5 3.9 3.5 3.8 3.4 3.5 3.6

1.6 2 1.2 3 1.4 1.4 1.1 1.1

1

2

3

4

5

6

7

Figure 4.9: Mean rating per sequence This Figure shows for each variant of each of the
eight sequences the mean rating assigned to it by the participants in our user study.

Ground truth Ours Low FPS Flownet3D

1

2

3

4

5

6

7

Us
er

sc
or

e

Figure 4.10: Rating distribution per variant In this Figure the distribution of ratings
is shown, aggregated by variant.

58

4.2 Evaluation

Grou
nd

tru
th

Ours

Lo
w

FP
S

Flo
wnet

3D

get a rating higher than or equal to ...

Flownet3D

Low FPS

Ours

Ground truth

Fo
rw

hi
ch

pe
rc

en
ta

ge
of

se
qu

en
ce

s
do

es
...

100% 89% 96% 98%

23% 100% 79% 98%

17% 40% 100% 98%

3% 4% 9% 100%

0%

50%

100%

Figure 4.11: User study variant matrix (overall) This Figure shows for each variant
(Ground truth, Ours, Flownet3D, Low FPS) for what percentage of the sequences it is rated
higher than or equal to other variants (this calculation is done per sequence per participant,
we do not average it first). This percentage is additionally encoded in the size- and color of
the squares. For example, we can read that Ground truth is rated at least as high as the Low
FPS variant for 96% of the sequences, or that our architecture gets a score at least as high as
the Low FPS variant for 79% of the sequences.

59

4. RESULTS

Grou
nd

tru
th

Ours

Lo
w

FP
S

Flo
wnet

3DFlo
wnet

3D
Lo

w
FP

S

Ours
Grou

nd
tru

th 100% 100% 100% 100%

12% 100% 100% 100%

0% 0% 100% 100%

0% 0% 0% 100%

(a) Malcolm - Samba

Grou
nd

tru
th

Ours

Lo
w

FP
S

Flo
wnet

3DFlo
wnet

3D
Lo

w
FP

S

Ours
Grou

nd
tru

th 100% 87% 87% 100%

12% 100% 50% 100%

37% 50% 100% 100%

0% 0% 25% 100%

(b) Malcolm - Roar

Grou
nd

tru
th

Ours

Lo
w

FP
S

Flo
wnet

3DFlo
wnet

3D
Lo

w
FP

S

Ours
Grou

nd
tru

th 100% 87% 100% 100%

37% 100% 87% 100%

12% 25% 100% 100%

0% 0% 0% 100%

(c) Malcolm - Yelling

Grou
nd

tru
th

Ours

Lo
w

FP
S

Flo
wnet

3DFlo
wnet

3D
Lo

w
FP

S

Ours
Grou

nd
tru

th 100% 100% 100% 100%

12% 100% 87% 100%

0% 37% 100% 100%

0% 0% 0% 100%

(d) Malcolm - Fight

Figure 4.12: User study variant matrix (per sequence This Figure shows a variant
matrix similar to Figure 4.11, see that Figure for a description on how to interpret this Figure.
Here we show per sequence the percentage of participants that rated one variant at least as
high as another variant.

60

4.2 Evaluation

Grou
nd

tru
th

Ours

Lo
w

FP
S

Flo
wnet

3DFlo
wnet

3D
Lo

w
FP

S

Ours
Grou

nd
tru

th 100% 100% 100% 100%

25% 100% 75% 100%

25% 62% 100% 100%

0% 0% 0% 100%

(e) Shae - Dancing

Grou
nd

tru
th

Ours

Lo
w

FP
S

Flo
wnet

3DFlo
wnet

3D
Lo

w
FP

S

Ours
Grou

nd
tru

th 100% 75% 87% 100%

25% 100% 75% 100%

25% 50% 100% 100%

12% 12% 0% 100%

(f) Shae - Wave Dance

Grou
nd

tru
th

Ours

Lo
w

FP
S

Flo
wnet

3DFlo
wnet

3D
Lo

w
FP

S

Ours
Grou

nd
tru

th 100% 87% 100% 100%

12% 100% 75% 100%

12% 62% 100% 100%

0% 0% 0% 100%

(g) Shae - Hip Hop Dancing

Grou
nd

tru
th

Ours

Lo
w

FP
S

Flo
wnet

3DFlo
wnet

3D
Lo

w
FP

S

Ours
Grou

nd
tru

th 100% 75% 100% 87%

50% 100% 87% 87%

25% 37% 100% 87%

12% 25% 50% 100%

(h) Shae - Looking Around

61

4. RESULTS

4.3 Analysis

In this Section we provide an analysis of the results presented earlier in this Chapter. We
first comment briefly on the runtime performance of the architecture. Next we discuss the
visual results, and finally we look into the correlation between the objective metric results
and the outcome of our user study.

Runtime performance Table 4.2 shows the runtime performance for various stages of
the architecture. Downsampling is very fast, and does not take significant time compared
to the other stages. The interpolation network itself is reasonably fast, and could be
considered being real-time. It is able to process 15 frame pairs per second, which should be
enough for normal use cases. The upsampling and neighbour snapping stages are currently
the bottlenecks, and can only run at a little under 2 to 4 FPS. To make the architecture as
a whole capable of performing real-time interpolation, significant improvements will have
to be made in these two stages. We discuss the topic of real-time interpolation in more
detail in Section 5.1.4.

Visual results In Figure 4.7, we compare the scene flow estimated by our network with
the ground truth scene flow. Overall, our network seems to estimate similar scene flow
to the ground truth, as can be seen by the similarity between Figures 4.7a and 4.7b.
In Figure 4.7c we can more easily see the error between the two. When looking at the
sequence displayed in Figure 4.8 or the corresponding video on our Github page, it becomes
evident that larger errors tend to occur in regions where the motion per frame is large, for
example in the hands and feet. When the motion is smaller, the architecture estimates
the scene flow with little error. Another interesting observation is that the ground truth
scene flow data has some small artifacts as well. This can be seen in Figure 4.7b in the
form of small deviating triangles, especially present in the chest area. Our interpolation
network learns to ignore these artifacts, and does not reproduce them.

Objective metrics & User study The objective metrics and the results from the
user study tell a very different story, even though the metrics have been calculated over
the same dynamic point cloud sequences that were used during the user study. For the
metrics based on scene flow error (EPE and the various versions of Accuracy) the clear
winner is No interpolation, with the results from Ours a little bit behind. The values
for the point-to-point metrics are very close, with Ours being slightly ahead on the spatial
component, and No interpolation again being ahead on the color component. For the

62

https://github.com/jelmr/pc_temporal_interpolation

4.3 Analysis

point-to-plane metric Flownet3D wins by a large margin. Ours comes ahead by a decent
margin in the VIF projection metric, which has been reported by Torlig et al. (71) to have
the strongest correlation with subjective user ratings on point clouds of human bodies.

It might be considered surprising that No interpolation (which simply repeats the
last frame) would achieve the highest score for so many metrics. A possible explanation
for this is the following. All aforementioned metrics (except the VIF projection metric)
calculate the average of some notion of error over all points. The majority of the points
move very little (as can be seen in Figure 4.7b). By always predicting a scene flow of 0,
like No interpolation does, a low error will be achieved for these points. For the smaller
number of points that do move far, a higher error will be assigned, but the mean will be
dominated by the low error scores from the many low-motion points.

For the user study the results are more coherent. From Figures 4.9 and 4.10 it is evident
that Ground truth receives on average the highest ratings, followed by Ours, then Low

FPS, and then finally Flownet3D. This is also the conclusion we arrive at when analyzing
Figure 4.11. Ground truth is clearly the highest rated, and is only beaten in a small
number of sequences (11% for Ours, 4% for Low FPS, 2% for Flownet3D). Next is Ours,
which is generally rated a bit below Ground truth, but rated equal or preferable to Low

FPS for 79% of the sequences. Flownet3D is clearly the lowest rated in almost all sequences.
When we look at Figure 4.12, we can see that the results vary a bit per sequence.

For example, the Malcolm - Samba sequence (Figure 4.12a) exhibits an almost perfect
hierarchy of Ground truth over Ours over Low FPS over Flownet3D, the only exception
being that Ours is rated equal to Ground truth in 12% of the sequences. In the sequence
Malcolm - Roar (Figure 4.12b), the interpolation created by our architecture has quite
a lot of noticeable artifacts (which we suspect is due to the sequence having relatively
large motion). As a result, Low FPS pulls ahead here. The final sequence we discuss is
Shae - Looking Around (Figure 4.12h). This is a slow sequence with not a lot of motion.
Supposedly due to this low amount of motion, both Ours and Flownet3D do a relatively
good job interpolating the sequence without many noticeable artifacts. On the other
hand, because the sequence is so slow, the lower frame rate from Low FPS becomes less
noticeable. As a result, the ratings for this sequence are closer together, and less clear-cut.

From manually comparing the objective metrics with the user study results, it can
already be seen that the results are not in agreement with each other. In Figure 4.12
we show the correlation matrix between the user scores and objective metrics using the
Pearson Correlation Coefficient. We see that none of metrics have a particularly strong
correlation with user scores. This is in accordance with findings of other research, such as

63

4. RESULTS

Torlig et al. (71). We see in particular that the various accuracy measures and end-point-
error correlate poorly with the user score. The point-to-plane, point-to-point (spatial),
and VIF projection metrics perform a bit better, but still leave much to be desired.

User
sco

re

PSN
R_P2P

LA
NE

PSN
R_XYZ

PROJ_
VIFP

ACC_20

ACC_05

PSN
R_RGB

ACC_10

Moti
on

dis
tan

ce EPE

EPE
Moti

on
dis

tan
ce

ACC_10PSN
R_RGB
ACC_05
ACC_20PROJ_

VIFP
PSN

R_XYZ
PSN

R_P2P
LA

NE
User

sco
re

1.00 0.960.80 -0.820.80 0.810.74 0.700.38 -0.87

0.96 1.000.92 -0.910.83 0.790.76 0.680.36 -0.90

0.80 0.921.00 -0.970.78 0.700.70 0.600.40 -0.80

-0.82 -0.91-0.97 1.00-0.80 -0.73-0.73 -0.69-0.44 0.79

0.80 0.830.78 -0.801.00 0.900.97 0.800.58 -0.66

0.81 0.790.70 -0.730.90 1.000.78 0.720.37 -0.64

0.74 0.760.70 -0.730.97 0.781.00 0.830.64 -0.62

0.70 0.680.60 -0.690.80 0.720.83 1.000.57 -0.59

0.38 0.360.40 -0.440.58 0.370.64 0.571.00 -0.11

-0.87 -0.90-0.80 0.79-0.66 -0.64-0.62 -0.59-0.11 1.00

-1.0

0.0

1.0

Figure 4.12: User study and objective metric correlation matrix This Figure shows
the Pearson Correlation Coefficient for the objective metrics and user score. Ground truth
sequences were excluded, because they by definition have a PSNR of∞, and it is unclear what
would be a suitable PSNR value to use instead for the correlation calculation. Motion distance
is the average motion (ground truth scene flow) over the top 10% highest motion points per
frame.

64

5

Conclusion

In this thesis we aimed to design and train an architecture capable of performing temporal
interpolation of dynamic point clouds. We identified a number of Research Objectives that
needed to be resolved in order to achieve this goal. We have then created- and implemented
such an architecture, and have shown through a diverse evaluation that it is indeed capable
of performing this interpolation. In this Chapter we will now first provide a discussion on
the difficulties we encountered and the lessons we learned along the way, and remaining
challenges (Section 5.1). Next, we make suggestions for how this work could be extended
in future research (Section 5.2). Finally, we briefly revisit our Research Objectives and
conclude (Section 5.3).

5.1 Discussion

Throughout this project we have had to overcome a number of difficulties and challenges
to get to our end goal of performing temporal interpolation of dynamic point clouds. In
this Section we share experiences and some of the insights that we have gained during
this process. We also reflect on the limitations of our current approach, as well as make
suggestions for future improvements.

In Section 5.1.1 we discuss the limited availability of dynamic point cloud sequences, and
how this affected our research. In Section 5.1.2 we discuss our limited success with reusing
existing neural network architectures, and the need to design new architectures for the
problem of temporal interpolation of dynamic point clouds. In Section 5.1.3 we comment
on the scaling properties of our architecture with regards to spatial resolution. Next, in
Section 5.1.4, we discuss the runtime performance of our architecture, and the changes
required to make the system capable of real-time interpolation. In Section 5.1.5 we look

65

5. CONCLUSION

into the performance of the network as a function of the magnitude of the motion in the
input sequence. Then, in Section 5.1.6 we discuss the viability of point cloud distortion
metrics as loss function. Lastly, in Section 5.1.7, we discuss the use of objective metrics
for quality evaluation, and how these objective metrics correlate with user perception.

5.1.1 Limited availability of data sets

One of the first issues we encountered during this project is the limited availability of public
dynamic point cloud data sets. We have only been able to find two high quality data sets,
which in total span less than 90 seconds of footage. In order to train a convolutional neural
network, such an amount of data is simply insufficient, which is why we have created our
own synthetic data set. This synthetic data set has allowed us to train and evaluate
our architecture, but it is not without downsides. The point clouds in our synthetic
data set inevitably have different properties than real-world captured point clouds may
have. One example is that in our data set, each point in a frame has a unique one-to-one
mapping to another point in other frames (that is, each point has exactly one semantically
corresponding point in other frames). In real-world data sets, this will generally not be
the case. Another example is that in our data set, points will never change color, they will
only be translated spatially, whereas in real-world data sets colors are likely to change, for
example due to variable lighting conditions.

Neural networks will exploit these kind of properties during the training process, which
is likely the reason that we see poor results when interpolating real-world data sets using
our architecture. We identify two possibilities:

• Because the network is trained on synthetic data with different properties, it has not
learned how to interpolate real-world point clouds. If the network were to be trained
with a real-world data set, it would learn properly how interpolate real-world data.

• The network architecture itself is not suited to perform temporal interpolation on
real-world data, and different architectures need to be explored.

Without access to sufficiently large real-world data sets, we cannot conclude which of
these two possibilities holds true. In future work, we would like to further investigate and
improve our architecture specifically with real-world data sets. To this end, we hope that
larger public data sets will become available in the future. An additional challenge here is
that for real-world data sets, ground truth scene flow data is likely not as easily available
as it is for our synthetic data sets.

66

5.1 Discussion

5.1.2 Reusability of network architecture

Transfer learning is a machine learning technique that reuses a model developed for one

task as a starting point for completion of another task (79). Many tasks lend themselves

well to transfer learning. In the context of point clouds, for instance, many classification-

and segmentation solutions share the same core architecture, and vary only in the last

couple layers (necessary because the outputs have different dimensions). Examples of

such solutions are PointNet (27) and DGCNN (29).

Early on in this project, we investigated reusing such architectures to perform temporal

interpolation of dynamic point clouds, but we had little success. We speculate this lack

of success could be attributed to the following. Classification and segmentation are tasks

that demand high level inference: the network will need to aggregate the local information

of individual points into higher level features. After a number of aggregation steps, these

higher level features can be used to classify- or segment the point cloud. In contrast,

we suspect that in the problem of temporal interpolation it are mostly the local features

that are of importance. The crux of the interpolation problem is point matching, which

matches points from the one point cloud to semantically matching points in the other point

cloud. To perform this matching, the network needs to find corresponding surfaces, which

is for the most part a local problem. There can of course be a benefit to having high level

features too, because certain types of surfaces might move and behave in different ways,

but we suspect this is secondary to local features. It is then logical that architectures

that focus on inference of high level features do not perform as good on the problem of

temporal interpolation.

Even the Flownet3D (22) architecture, which has been designed for scene flow estima-

tion, does not perform that well on our data set of human bodies. We suspect this is

because Flownet3D has been designed and evaluated around the KITTI (80) and Fly-

ingThings3D (81) data sets. The first is a data set of outdoor scenes for autonomous

vehicles, the second is a data set consisting of many objects rigidly moving through a 3D

space. Both are 2D data sets that have been converted to 3D point clouds. To perform

well on these data sets, it is important to segment the different objects from each other.

Once the objects have been segmented, the motion for each object is relatively rigid, and

most points in an object will travel in the same direction. For these data sets, Flownet3D

will thus learn to segment the objects and predict in which direction each object as a

whole is moving. When we apply Flownet3D to our data set, we see this same behavior,

67

5. CONCLUSION

where it will attempt to move the entire human body in one direction, which leads to poor

performance.

5.1.3 Scaling

The neural network modules used in this project and in related work rely on some form

of nearest neighbour search. Such nearest neighbour search is O(n2) with n input points,

and thus scales poorly with the spatial resolution of input point clouds. High resolution

dynamic point clouds can consist of hundreds of thousands of points per frame, which

makes it computationally expensive to process them in the network directly, especially

when taking into consideration the many training iterations required to fully train the

network. In this project, we have circumvented this problem by downsampling the input

point clouds to 2048 points, performing the scene flow estimation on these downsampled

point clouds, and then upsampling them back to the original spatial resolution. The

upsampling technique that we use still requires nearest neighbour search, but it only has

to be performed once, and it is not part of the neural network training loop, making it

quite manageable.

It could be advantageous to be able to perform the scene flow estimation on point clouds

of higher resolution than 2048 points, as this would allow the network to make a more

fine-grained estimation. It is likely such improvements would be especially noticeable in

the facial region, which is currently represented by a relatively small number of points,

while also exhibiting very complex motions. We see two approaches which could enable

the scene flow estimation of higher resolution point clouds:

• Develop neural network modules for point cloud learning that do not rely on nearest

neighbour search. Such modules would need to work fundamentally different than

the modules presented in this thesis, and it is unclear how such modules would work.

• More efficient nearest neighbour search algorithms could be investigated. Our cur-

rent implementation of k-nearest neighbour is a naive brute-force approach. Due to

the algorithm being embarrassingly parallel, we achieve reasonable performance on

a GPU. Still, we conjecture that it is possible to develop a more efficient implemen-

tation for our use case. One avenue to explore, for example, is to utilize techniques

similar to cell linked lists (82). By setting a maximum neighbourhood distance, cell

linked lists allow for more efficient nearest neighbour search.

68

5.1 Discussion

5.1.4 Real-time interpolation

As we show in Table 4.2, our architecture is currently not capable of performing temporal
interpolation in real-time. We now discuss the performance of the individual parts, and
what kind of improvements need to happen to allow for real-time interpolation.

• Uniform downsampling This part of the architecture is fast, and does not pose
an issue for real-timeness.

• Interpolation network The interpolation network runs at approximately 15 frames
per second, which could be considered real-time. Do note that this frame rate is
determined by amortizing the run time over the batch size, so to reach this frame
rate during real-time streaming, frames will need to be buffered to fill the batches,
adding some latency to the process. The performance of the interpolation network
could be further improved with a more efficient nearest neighbour implementation
(see Section 5.1.3), or by attempting to reduce the number of weights in the network.

• Upsampling, neighbour snapping The upsampling and neighbour snapping mod-
ules are the slowest parts of the architecture, by a significant margin. The techniques
used for upsampling and neighbour snapping are very similar, and depend heavily on
nearest neighbour search. In these modules, however, we have to deal with the high
resolution point clouds (100k points) instead of the low resolution point clouds (2048
points), which makes in infeasible to apply the naive brute-force nearest neighbour
search that we use in our interpolation network. Our current implementation builds
a KD-tree of the low resolution point clouds, and iteratively queries this KD-tree
for each point of the high resolution point cloud. This is a rather inefficient imple-
mentation, which additionally runs on only one thread on the CPU. We expect that
by employing a more efficient algorithm (potentially on the GPU, or at least multi-
threaded) we could achieve large speedups, potentially bringing the performance to
real-time level.

Ultimately we believe that the system is not far away from being real-time. We expect
huge speedups in the upsampling- and neighbour snapping modules with a more efficient
nearest neighbour algorithm, which we consider to be mostly an engineering problem,
rather than a research one. We expect that the performance of the interpolation network
can be improved with a better nearest neighbour algorithm or by optimizing the number
of weights in the network, but that the gains will be smaller than in the upsampling- and
neighbour snapping modules.

69

5. CONCLUSION

5.1.5 Motion distance

Fundamentally, our interpolation network works by analyzing the k-nearest neighbourhood
of each point, and learning a soft mapping between the base point and the neighbouring
points. The idea is that the network will learn to select the true semantically corresponding
point, and base its scene flow estimation on that. For this to work, the true semantically
corresponding point should ideally fall in the k-nearest neighbourhood, for if it does not,
the network might have a difficult time learning a proper mapping. This means that the
maximum motion between two frames that our network is able to capture, is parameterized
by k (the parameter from k-nearest neighbour).

With more time, we would have liked to perform a more in-depth investigation of the
impact of various values of k on the performance of the network when varying the maximum
motion between two frames. We speculate that increasing k would allow the network to
obtain better performance on sequences with larger motion between frames. Note also
that frames that are temporally further apart, generally exhibit a larger motion between
them. This means that if we can make the network successfully interpolate larger motions,
we could drop more frames, resulting in larger bandwidth savings.

5.1.6 Distortion metrics as loss function

We started out this project with the intention to use point cloud distortion metrics as
loss function for our neural network. We considered the distortion metrics of projection
distortion, point-to-point, point-to-plane, and plane-to-plane (all discussed in Section 2.7
in more detail). With each of these metrics we encountered difficulties when attempting
to use them as loss function for our neural network:

• Projection distortion To calculate the projection distortion, a number of 2D ren-
derings of the point clouds have to be created first, which proved to be challenging.
This is because the point clouds used in our neural network are downsampled to 2048
points, which makes it hard to make informative renderings (meaning the renderings
convey the essential properties of the point cloud). If a low resolution is chosen for
the projection, little detail will be available, and the metric would only account for
large deviations between our interpolation and the ground truth. If a high resolution
is chosen, the projection will contain many holes, which can lead to two point clouds
being labeled as very different, even if the underlying geometry they describe is very
similar. Figure 5.1 shows examples of both a low- and high resolution projection of
a point cloud.

70

5.1 Discussion

(a) Low resolution projection (b) High resolution projection

Figure 5.1: Example of inadequate projections Figure (a) shows a low resolution pro-
jection of a point cloud (19 × 30 pixels). While this projection does not have any holes, it is
pixelated, and contains very little information. (b) shows a higher resolution projection of the
same input point cloud (126 × 203 pixels). Because of the low resolution of the input point
cloud, this projection is full of holes, making comparison using 2D distortion metrics difficult.

• Plane-to-plane Using plane-to-plane distortion requires surface normal information
for both the point clouds that are being compared. Since our neural network does not
estimate these surface normals, plane-to-plane metrics cannot be directly used. One
solution would be to use established algorithms to estimate the surface normals,
but doing so makes output of the loss function dependent on the quality of the
chosen normal estimation algorithm. Additionally, performing the surface normal
estimation would add significant computational overhead to each training pass, which
adds up rapidly due to the large number of training passes required to train a neural
network to convergence.

• Point-to-point, point-to-plane Unlike the projection distortion and plane-to-
plane distortion, these two metrics did not have fundamental issues preventing us
from using them as loss functions. When using them as loss function, however, we
never managed to obtain good results. Gaining insight in the training process of a
neural network is notoriously difficult, and as such we will now speculate why these
metrics did not perform well as loss function. Both metrics work by finding for

71

5. CONCLUSION

a b

a
′

b
′

â

b̂

Figure 5.2: Example of failure of point-to-point and point-to-plane metrics as loss
function. Consider the scene flow estimation between frame t = {a, b} and frame t′ = {a′, b′}.
The ground truth scene flow is shown using the grey dashed arrows. Since the weights in the
network are initialized randomly, the initial scene flow prediction could be anywhere. Assume
that at some point the network predicts scene flow â − a for point a, and b̂ − b for point
b (the red arrows). Now when calculating the point-to-point or point-to-plane error, b′ will
be matched to â, and a′ will be matched to b̂, and the error will be calculated using these
matchings. As a result, the network will attempt to minimize the distance between b′ and â,
and between a′ and b̂, which is an erroneous adjustment with regards to the ground truth.

each point in the one point cloud the nearest point in the other point cloud, and
then calculating some measure of error between these two matched points. Note
however, that the matched point is not guaranteed (or even likely) to be the true
semantically corresponding point. The metrics only consider closeness to any point,
not closeness to the correct point. We illustrate an example of this behavior in Fig-
ure 5.2. Additionally, which points get matched together is determined by the scene
flow estimation made by the network, meaning that as scene flow estimations change
throughout the training process, so will the point matchings. This can cause jumps
in the error measure throughout training iterations, which results in a non-smooth
gradient. We suspect that the combination of these two factors makes it difficult for
the network to learn to interpolate the point clouds properly.

Altogether, our experiences lead us to question whether traditional point cloud distortion
metrics can at all be useful as loss functions for temporal interpolation of dynamic point
clouds or other tasks that output point clouds. In order to use point cloud distortion
metrics as loss function, further research into new distortion metrics is needed.

5.1.7 Objective metrics for evaluation

The objective metrics we report in Section 4.2.5 paint a different picture than the results
from our user study in Section 4.2.6. As can be seen in Figure 4.12, the metrics have limited

72

5.2 Future work

correlation with the user scores form our user study. All this matches findings from other
research, such as Torlig et al. (71). This is problematic, as our work is highly dependent
on these metrics, both for their use as loss function to train our neural network, and for
evaluation of our architecture. For the purpose of evaluation, this means that objective
metrics alone can not serve as a replacement for user studies. Objective metrics can still
be useful to quickly get an approximate idea of the performance of the architecture, but
for accurate evaluation, a user study, albeit costly and time-consuming, is preferred. We
hope that in the future new objective quality metrics for point clouds will be researched,
that can correlate better with human perception of visual quality.

5.2 Future work

We now identify a number areas where improvements could be made, and which could be
explored in future research. In the context of our architecture specifically we focus on two
issues. First, it would be useful to further study the effect of the neighbourhood radius on
the performance of the network when the motion between frames is large. Second, more
efficient nearest neighbour implementations could speed up the runtime performance of
the architecture significantly, and could help a lot towards making the system capable of
real-time interpolation.

More general to the problem of temporal interpolation of dynamic point clouds, or even
to the general application of machine learning to dynamic point clouds, we identify an-
other set of problems that need to be addressed. First, the number of publicly available
dynamic point cloud data sets is currently limited, which makes it difficult to train neural
networks with them. It would be highly useful if more public dynamic point cloud data
sets were made available. Next, there is the issue of scaling with spatial resolution. Many
architectures that apply deep learning on point clouds rely on techniques like furthest
point sampling or nearest neighbour search, which do not scale well computationally with
the number of input points. By researching either alternatives or improvements to these
techniques, it might become possible to process point clouds with more points. Lastly,
we believe new research into objective quality metrics is needed. Existing quality metrics
only exhibit a weak correlation with user perception, which makes it hard to accurately
evaluate the quality of any interpolation architecture without performing costly user stud-
ies. Having access to better objective quality metrics could thus speed up the development
process of such architectures.

73

5. CONCLUSION

5.3 Conclusion

In this thesis we set out to design an architecture capable of performing temporal inter-
polation on dynamic point clouds. By transmitting point clouds in a lower frame rate and
successively upsampling their frame rate using such an architecture on the receiving side,
the bandwidth requirements of streaming dynamic point clouds can be reduced, without
making concessions on the Quality of Experience of the viewer. We identified a number
of Research Objectives that needed to be resolved in order to achieve this goal. In this
Section we now briefly revisit our primary Research Objectives, and discuss how we have
addressed them. Finally, we conclude.

Research Objective 1 Design an architecture capable of performing temporal in-
terpolation on dynamic point clouds.

We have designed, implemented and evaluated a new architecture capable of performing
temporal interpolation of dynamic point clouds. We first downsample the input point
clouds to a more manageable size using uniform downsampling. Next, our interpolation
network estimates the scene flow between these downsampled point clouds. This inter-
polation network first estimates a correspondence between points using our novel point
matching module, which is later refined using our flow refinement module. Afterwards,
we upsample this scene flow estimation using 3D interpolation. The upsampled scene
flow estimation then serves as the basis of the interpolation. Finally, we apply the novel
neighbour snapping technique to improve the smoothness of the interpolation.

Research Objective 2 Train our neural network.

In order to be able to train our neural network, we have created a novel synthetic
data set consisting of animated human bodies, complete with ground truth scene flow
and surface normals. This data set has allowed us to train our neural network despite
the limited availability of real-world dynamic point cloud data sets. Additionally, we have
experimented with a number of objective metrics as loss functions, and have discussed their
limitations in this capacity. Remaining research challenges include making the architecture
capable of real-time interpolation, and exploring its application on real-world data.

We have evaluated our work extensively using a variety of objective metrics, as well
as by conducting a user study. Our results reaffirm the findings from related research
that existing objective quality metrics have a poor correlation with subjective user per-
ception. Additionally, our user study shows that participants generally prefer sequences
interpolated using our architecture over these interpolated by current state-of-the-art or
sequences that have not been interpolated.

74

Appendix A

Data set creation

In this Appendix we discuss in more the detail the creation of our synthetic data set. We

start by downloading a number of animated sequences from Adobe Mixamo (76) in the

Filmbox (.FBX) format. In this Appendix we explain how we first convert these to meshes

in Wavefront OBJ format (83) (.OBJ and .MTL), and how we later convert these meshes

to point clouds in .PLY format. Lastly, we discuss how we calculate surface normal- and

scene flow data.

Filmbox to Wavefront OBJ We use a custom Blender (77) script to extract from

the Filmbox file the textures and to generate per frame in the animation a mesh in the

Wavefront OBJ format (83) (.OBJ and .MTL). This is done with the fbx_to_obj.py

script, which can be found on our Github page, along instructions on how to run it. All

the heavy lifting here is done by Blender, so we do not go into much detail about this step.

Wavefront OBJ to point cloud Next we wish to convert these meshes to point cloud

format (.PLY), for this we use the obj_to_ply.py script, also found on our Github 4.2.1

page. This conversion works as follows. The meshes in OBJ format consist of a list of m

triangles. Each triangle is described by three corner points. Each corner point is described

by a spatial coordinate (x, y, z), and a texture coordinate, which determines which part of

the texture will be mapped to that point during rendering. We want to randomly sample

n points, and we wish to sample from each triangle proportional to its surface area. To

do this, we need to calculate for each triangle its surface area. Let the spatial coordinates

for the three corner points be denoted as P1 =< a1, a2, a3 >, P2 =< b1, b2, b3 > and

P3 =< c1, c2, c3 >. We first create two vectors describing the triangle:

75

https://github.com/jelmr/pc_temporal_interpolation

A. DATA SET CREATION

⃗P1P2 =< b1 − a1, b2 − a2, b3 − a3 >=< x1, y1, z1 > (A.1)

⃗P1P3 =< c1 − a1, c2 − c2, b3 − a3 >=< x2, y2, z2 > (A.2)

We can then calculate their orthogonal vector by taking their cross product:

u⃗ = ⃗P1P2 × ⃗P1P3 =< x3, y3, z3 > (A.3)

We can then calculate the magnitude of this orthogonal vector. This gives us the area
of the parallelogram described by the two orthogonal vectors:

|u⃗| =
√
(x3)2 + (y3)2 + (z3)2 (A.4)

The area of the triangle is then simply half the area of this parallelogram:

area =
|u⃗|
2

(A.5)

We calculate for each triangle its surface area according to the Equations above, and also
calculate the sum of the surface area of each triangle. We then randomly sample n triangle
indices between 0 and m proportional to their surface area. For each sampled index we
will randomly sample one point in that triangle. It is possible (and likely) that certain
triangles will be sampled multiple times, or that some triangles might not be sampled at
all. In order to randomly select a point on a triangle, we can use the barycentric coordinate
system (84). We randomly sample barycentric coordinates u and v between 0 and 1. In
the event that u+ v > 1 the point would fall outside the triangle, so if that is the case we
adjust them to u = 1− u and v = 1− v. The third barycentric coordinate now becomes:

w = 1− (u+ v) (A.6)

To obtain the spatial coordinate of the sampled point, we can now calculate the Cartesian
coordinates as follows:

Psampled = u ∗ P1 + v ∗ P2 + w ∗ P3 (A.7)

We can sample the 2D texture coordinates similarly. Given the three texture coordinates
T1 =< a1, a2 >, T2 < b1, b2 >, and T3 =< c1, c2 >, we can sample the random texture
point Tsampled =< d1, d2 > as follows:

d1 = u ∗ a1 + u ∗ b1 + u ∗ c1 (A.8)

76

d2 = v ∗ a2 + v ∗ b2 + v ∗ c2 (A.9)

To obtain the color of the sampled point, we simply look up the pixel at coordinate
Tsampled =< d1, d2 > in the texture.

Surface normals We also wish to generate surface normals, for use in certain distortion
metrics. To calculate these surface normals, we can reuse the orthogonal vectors ⃗P1P2 =

< x1, y1, z1 > and ⃗P1P3 =< x2, y2, z2 > that we calculated earlier. The normal vector
P̂ =< x̂, ŷ, ẑ > can be calculated as follows:

x̂ = y1 ∗ z2 − z1 ∗ y2 (A.10)

ŷ = z1 ∗ x2 − x1 ∗ z2 (A.11)

ẑ = x1 ∗ y2 − y1 ∗ x2 (A.12)

Note that all points that are sampled from a given triangle will share the same surface
normal. In our data set the meshes contain a relatively high number of triangles, so this
is not a problem. If the triangles are larger, normal interpolation techniques like Phong
shading (85, 86) could be applied to create a smoother surface approximation.

Scene flow Additionally, we also want to generate scene flow ground truth data, for
use in training our neural network. In the meshes in Wavefront OBJ format, a triangle
at index i in a frame at time t will semantically correspond to the triangle at index i in
any frame at time t′. By reusing the triangle indices and barycentric coordinates that we
randomly sampled we can thus sample points that semantically correspond to each other.
For any two semantically corresponding points we can then trivially calculate their scene
flow by subtracting their spatial coordinates.

77

A. DATA SET CREATION

78

Appendix B

User study material

In this Appendix we include the material used during the user study we conducted. Sec-
tion B.1 show the the informed consent form, which explains the goal and procedure of
the study. Section B.2 is the Participant Information form, used to ask the participant
for some additional information. Section B.3 Video Rating Form, used by participants to
rate the point cloud sequences. In Section B.4 we show the video viewing interface used
during the study.

79

Informed Consent
Temporal interpolation of dynamic point clouds evaluation

Research Team
Jelmer Mulder (VU / CWI), j.mulder@vu.nl

Goal
The goal of this evaluation is to assess user perception of dynamic point cloud sequences of various
frame rates, and to study the impact of temporal interpolation. You will be asked to watch a number of
videos and rate them.

Participation
 The expected duration of this evaluation session is 25 minutes, including an introduction of the

project (5 minutes), and a video rating session (20 minutes).
 Participation is voluntary. You are free to abandon the experiment at any time, for any reason.
 The researcher will answer all further questions regarding the experiment: now, during the

experiment, or afterwards.

Privacy
 All data will be analyzed anonymously. The results of this research might be scientifically

published. Data will always be presented anonymously.
 Personal data will not be shared with third parties. All personal data will be removed 6 months

after the end of the research.
Procedure

• You will be shown 32 short animated video sequences, spanning 10 to 15 seconds each. You
are only allowed to view each sequence once, as we are interested in your first impression.

• Please rate on the Video Rating Form the quality of the motion on a scale from ‘1’ to ‘7’, with ‘1’
meaning the motion is of terrible quality, and ‘7’ meaning the motion is of excellent quality.

• You should only consider the quality of the motion. The quality of the model should not be
factored into your rating.

Please sign if you understand this information, and agree to participate in this experiment:

Name: ________________ Date:________________ Signature:________________

B. USER STUDY MATERIAL

B.1 Informed consent form

80

Participant Information Form
Temporal interpolation of dynamic point clouds evaluation

Name: __________________________

Age: __________________________

Do you have any prior experience in visual quality evaluation? Yes / No

Date:________________ Signature:________________

B.2 Participant information form

B.2 Participant information form

81

Video rating form
(Terrible)

 1

2

3

4

5

6
(Excellent)

7

Sequence 01
Sequence 02
Sequence 03
Sequence 04
Sequence 05
Sequence 06
Sequence 07
Sequence 08
Sequence 09
Sequence 10
Sequence 11
Sequence 12
Sequence 13
Sequence 14
Sequence 15
Sequence 16
Sequence 17
Sequence 18
Sequence 19
Sequence 20
Sequence 21
Sequence 22
Sequence 23
Sequence 24
Sequence 25
Sequence 26
Sequence 27
Sequence 28
Sequence 29
Sequence 30
Sequence 31
Sequence 32

B. USER STUDY MATERIAL

B.3 Video rating form

82

B.4 Video viewing interface

B.4 Video viewing interface

(a) During demonstration

(b) During rating

Figure B.1: User study interface Figure (a) shows the interface used during the demon-
stration, it is used to show the participant four sequences in order to get an idea of the range
in quality of the sequences, and to become familiar with the interface. (b) shows the interface
used during the video rating session itself. Participants are shown a number of 10s-15s clips.
When the clip ends, the next clip is loaded (but paused), so each clip can only be viewed once.
The participants can then start the next clip at their own volition.

83

B. USER STUDY MATERIAL

84

References

[1] Aljoscha Smolic. 3D video and free viewpoint videoFrom capture to dis-
play. Pattern recognition, 44(9):1958–1968, 2011. 2

[2] Greg Turk and Marc Levoy. The stanford bunny, 2005. 2

[3] Kyriaki Christaki, Konstantinos C Apostolakis, Alexandros
Doumanoglou, Nikolaos Zioulis, Dimitrios Zarpalas, and Petros
Daras. Space Wars: An AugmentedVR Game. In International Conference
on Multimedia Modeling, pages 566–570. Springer, 2019. 2

[4] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Buda-
gavi, Pablo Cesar, Philip A Chou, Robert A Cohen, Maja Krivokuća,
Sébastien Lasserre, Zhu Li, et al. Emerging MPEG standards for point
cloud compression. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 9(1):133–148, 2018. 2

[5] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE multimedia,
19(2):4–10, 2012. 2, 3

[6] Yebin Liu, Qionghai Dai, and Wenli Xu. A point-cloud-based multiview
stereo algorithm for free-viewpoint video. IEEE transactions on visualization
and computer graphics, 16(3):407–418, 2010. 2

[7] J Bedford. Photogrammetric Applications for Cultural Heritage. Historic:
Swindon, UK, page 128, 2017. 2

[8] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas.
Frustum pointnets for 3d object detection from rgb-d data. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 918–927,
2018. 2

85

REFERENCES

[9] Making virtual Reality Human, Create Volumetric video of real people.
http://8i.com. Online, accessed April 2019. 3

[10] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang,
Adarsh Kowdle, Yury Degtyarev, David Kim, Philip L Davidson, Sameh
Khamis, Mingsong Dou, et al. Holoportation: Virtual 3d teleportation in
real-time. In Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, pages 741–754. ACM, 2016. 3

[11] Kazuo Sugimoto, Robert A Cohen, Dong Tian, and Anthony Vetro.
Trends in efficient representation of 3D point clouds. In 2017 Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference (AP-
SIPA ASC), pages 364–369. IEEE, 2017. 3

[12] Velodyne Lidar HDL-64e. https://velodynelidar.com/hdl-64e.html. Online,
accessed April 2019. 3

[13] Microsoft Kinect v2. https://www.microsoft.com/en-us/p/k/91hq5578vksc.
Online, accessed April 2019. 3

[14] Intel RealSense D435. https://newsroom.intel.com/news/new-intel-

realsense-d435i-stereo-depth-camera-adds-6-degrees-freedom-tracking/.
Online, accessed April 2019. 3

[15] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and
Achintya Bhowmik. Intel realsense stereoscopic depth cameras. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 1–10, 2017. 3

[16] Taos Myers Eugene dEon, Bob Harrison and Philip A. Chou. 8i Voxelized
Full Bodies, version 2 - A Voxelized Point Cloud Dataset, 2017. ISO/IEC
JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document m40059/M74006. 3,
30

[17] Multi-Camera Configuration for Intel RealSense D400 Series Depth
Sensors. https://www.intel.com/content/www/us/en/support/articles/

000028140/emerging-technologies/intel-realsense-technology.html?wapkw=

multi-camera+configuration+for+intel. Online, accessed May 2019. 4

86

http://8i.com
https://velodynelidar.com/hdl-64e.html
https://www.microsoft.com/en-us/p/k/91hq5578vksc
https://newsroom.intel.com/news/new-intel-realsense-d435i-stereo-depth-camera-adds-6-degrees-freedom-tracking/
https://newsroom.intel.com/news/new-intel-realsense-d435i-stereo-depth-camera-adds-6-degrees-freedom-tracking/
https://www.intel.com/content/www/us/en/support/articles/000028140/emerging-technologies/intel-realsense-technology.html?wapkw=multi-camera+configuration+for+intel
https://www.intel.com/content/www/us/en/support/articles/000028140/emerging-technologies/intel-realsense-technology.html?wapkw=multi-camera+configuration+for+intel
https://www.intel.com/content/www/us/en/support/articles/000028140/emerging-technologies/intel-realsense-technology.html?wapkw=multi-camera+configuration+for+intel

REFERENCES

[18] Speedtest Global Index. https://www.speedtest.net/global-index. Online,
accessed May 2019. 5

[19] Amin Banitalebi-Dehkordi, Mahsa T Pourazad, and Panos Nasiopoulos.
The effect of frame rate on 3D video quality and bitrate. 3D Research, 6(1):1,
2015. 5

[20] Yao Wang, Jörn Ostermann, and Ya-Qin Zhang. Video processing and com-
munications. Signal Processing Series. Prentice Hall, 2002. 6

[21] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik
Learned-Miller, and Jan Kautz. Super slomo: High quality estimation of
multiple intermediate frames for video interpolation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 9000–9008,
2018. 6, 7, 22

[22] Xingyu Liu, Charles R Qi, and Leonidas J Guibas. FlowNet3D: Learning
Scene Flow in 3D Point Clouds. arXiv preprint arXiv:1806.01411, 2018. 6, 27,
28, 55, 57, 67

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015. 7, 17, 21

[24] Simon Niklaus and Feng Liu. Context-aware synthesis for video frame
interpolation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1701–1710, 2018. 7, 22

[25] Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via
adaptive separable convolution. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 261–270, 2017. 7, 21, 22

[26] Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via
adaptive convolution. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 670–679, 2017. 7, 21

[27] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation. Proc.
Computer Vision and Pattern Recognition (CVPR), IEEE, 1(2):4, 2017. 7, 25, 67

87

https://www.speedtest.net/global-index

REFERENCES

[28] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a metric space.
In Advances in Neural Information Processing Systems, pages 5099–5108, 2017. 7,
25, 28, 41

[29] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bron-
stein, and Justin M Solomon. Dynamic graph CNN for learning on point
clouds. arXiv preprint arXiv:1801.07829, 2018. 7, 14, 26, 40, 41, 67

[30] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-
Miller. Multi-view convolutional neural networks for 3d shape recogni-
tion. In Proceedings of the IEEE international conference on computer vision, pages
945–953, 2015. 7, 23

[31] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional
neural network for real-time object recognition. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 922–928. IEEE,
2015. 7, 24

[32] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation
for volumetric shapes. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1912–1920, 2015. 9, 45

[33] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and Takeo
Kanade. Three-dimensional scene flow. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, 2, pages 722–729. IEEE, 1999. 14, 27

[34] Klaas Klasing, Daniel Althoff, Dirk Wollherr, and Martin Buss. Com-
parison of surface normal estimation methods for range sensing applica-
tions. In 2009 IEEE International Conference on Robotics and Automation, pages
3206–3211. IEEE, 2009. 15, 29

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012. 17

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

88

REFERENCES

Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015. 17

[37] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A
Alemi. Inception-v4, inception-resnet and the impact of residual connec-
tions on learning. In AAAI, 4. 17

[38] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
17

[39] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing
between capsules. In Advances in neural information processing systems, pages
3856–3866, 2017. 17

[40] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus.
Regularization of neural networks using dropconnect. In International con-
ference on machine learning, pages 1058–1066, 2013. 17

[41] Dan Cireşan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep
neural networks for image classification. arXiv preprint arXiv:1202.2745, 2012.
17

[42] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mo-
hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Brian Kingsbury, et al. Deep neural networks for acoustic mod-
eling in speech recognition. IEEE Signal processing magazine, 29, 2012. 17

[43] George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent
pre-trained deep neural networks for large-vocabulary speech recognition.
IEEE Transactions on audio, speech, and language processing, 20(1):30–42, 2012. 17

[44] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Advances in neural information pro-
cessing systems, pages 1223–1231, 2012. 17

[45] Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep
neural network learning for speech recognition and related applications:

89

REFERENCES

An overview. In 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 8599–8603. IEEE, 2013. 17

[46] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari
with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 17

[47] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go
with deep neural networks and tree search. nature, 529(7587):484, 2016. 17

[48] Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foun-
dations and Trends R⃝ in Signal Processing, 7(3–4):197–387, 2014. 17

[49] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016. 18, 19

[50] Boris T Polyak. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17,
1964. 20

[51] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine Learn-
ing Research, 12(Jul):2121–2159, 2011. 20

[52] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop, coursera:
Neural networks for machine learning. University of Toronto, Technical Report,
2012. 20

[53] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 20

[54] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks
for image classification: A comprehensive review. Neural computation,
29(9):2352–2449, 2017. 20

[55] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse recti-
fier neural networks. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 315–323, 2011. 21

90

REFERENCES

[56] Hui Men, Hanhe Lin, Vlad Hosu, Daniel Maurer, Andrés Bruhn, and
Dietmar Saupe. Technical Report on Visual Quality Assessment for Frame
Interpolation. arXiv preprint arXiv:1901.05362, 2019. 21

[57] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black.
A naturalistic open source movie for optical flow evaluation. In European
Conference on Computer Vision, pages 611–625. Springer, 2012. 21

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016. 22

[59] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns
for optical flow using pyramid, warping, and cost volume. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 8934–8943,
2018. 22

[60] Truc Le and Ye Duan. Pointgrid: A deep network for 3d shape under-
standing. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 9204–9214, 2018. 24

[61] Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-
networks for the recognition of 3d point cloud models. In Proceedings of
the IEEE International Conference on Computer Vision, pages 863–872, 2017. 24

[62] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and
Pierre Vandergheynst. Geometric deep learning: going beyond euclidean
data. IEEE Signal Processing Magazine, 34(4):18–42, 2017. 25

[63] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan
Chen. PointCNN: Convolution On X-Transformed Points. In Advances in
Neural Information Processing Systems, pages 828–838, 2018. 26

[64] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann
Heng. Pu-net: Point cloud upsampling network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2790–2799, 2018. 26

[65] Matthew J Moynihan, Rafael Pagés, and Aljoa Smolić. Spatio-temporal
Upsampling for Free Viewpoint Video Point Clouds. In VISIGRAPP, 2019.
27

91

REFERENCES

[66] Hui Huang, Shihao Wu, Minglun Gong, Daniel Cohen-Or, Uri Ascher,
and Hao Richard Zhang. Edge-aware point set resampling. ACM transac-
tions on graphics (TOG), 32(1):9, 2013. 27

[67] Ayush Dewan, Tim Caselitz, Gian Diego Tipaldi, and Wolfram Burgard.
Rigid scene flow for 3d lidar scans. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1765–1770. IEEE, 2016. 27

[68] Jorge J Moré. The Levenberg-Marquardt algorithm: implementation and
theory. In Numerical analysis, pages 105–116. Springer, 1978. 27

[69] Philip A Chou, Eduardo Pavez, Ricardo L de Queiroz, and Antonio Or-
tega. Dynamic polygon clouds: Representation and compression for vr/ar.
arXiv preprint arXiv:1610.00402, 2016. 28, 29

[70] Hamid R Sheikh and Alan C Bovik. Image information and visual quality.
In 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing,
3, pages iii–709. IEEE, 2004. 28

[71] Eric M Torlig, Evangelos Alexiou, Tiago A Fonseca, Ricardo L
de Queiroz, and Touradj Ebrahimi. A novel methodology for quality as-
sessment of voxelized point clouds. In Applications of Digital Image Processing
XLI, 10752, page 107520I. International Society for Optics and Photonics, 2018. 28,
29, 63, 64, 73

[72] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Cohen, and Anthony
Vetro. Geometric distortion metrics for point cloud compression. In 2017
IEEE International Conference on Image Processing (ICIP), pages 3460–3464. IEEE,
2017. 29

[73] Evangelos Alexiou and Touradj Ebrahimi. Point cloud quality assessment
metric based on angular similarity. In 2018 IEEE International Conference on
Multimedia and Expo (ICME), pages 1–6. IEEE, 2018. 29

[74] Touradj Ebrahimi, Siegfried Foessel, Fernando Pereira, and Peter
Schelkens. Jpeg pleno: Toward an efficient representation of visual re-
ality. Ieee Multimedia, 23(4):14–20, 2016. 30

92

REFERENCES

[75] Sergio Orts Escolano Charles Loop, Qin Cai and Philip A. Chou. Mi-
crosoft Voxelized Upper Bodies - A Voxelized Point Cloud Dataset,
2016. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document
m38673/M72012. 31

[76] Adobe Mixamo. https://www.mixamo.com, 2019. Online, accessed March 2019.
45, 46, 75

[77] Blender Online Community. Blender - a 3D modelling and rendering package.
Blender Foundation, Blender Institute, Amsterdam, 2019. 46, 75

[78] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-
offrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems, 2015. Software available from tensorflow.org. 48

[79] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22. 67

[80] Moritz Menze and Andreas Geiger. Object scene flow for autonomous
vehicles. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3061–3070, 2015. 67

[81] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cre-
mers, Alexey Dosovitskiy, and Thomas Brox. A large dataset to train con-
volutional networks for disparity, optical flow, and scene flow estimation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4040–4048, 2016. 67

[82] William Mattson and Betsy M Rice. Near-neighbor calculations using
a modified cell-linked list method. Computer Physics Communications, 119(2-
3):135–148, 1999. 68

93

https://www.mixamo.com
http://www.blender.org
https://www.tensorflow.org/
https://www.tensorflow.org/

REFERENCES

[83] Wavefront OBJ format. http://paulbourke.net/dataformats/obj, 2019. On-
line, accessed March 2019. 75

[84] August Ferdinand Möbius. Der barycentrische Calcul, ein Hülfsmittel zur ana-
lytischen Behandlung der Geometrie (etc.). Barth, 1827. 76

[85] Bui Tuong-Phong. Illumination for computer-generated images. Technical
Report 129, UTEC-CSC-73, Computer Science, 1973. 77

[86] Alphonsus Aloisius Maria Kuijk and Edwin H Blake. Faster phong shad-
ing via angular interpolation. In Computer Graphics Forum, 8, pages 315–324.
Wiley Online Library, 1989. 77

94

http://paulbourke.net/dataformats/obj

	List of Figures
	List of Tables
	1 Introduction
	1.1 Background & context
	1.2 Problem statement
	1.3 Methodology
	1.4 Contributions
	1.5 Structure

	2 Related Work
	2.1 Point clouds
	2.2 Deep learning
	2.3 Video frame interpolation
	2.4 Learning on point clouds
	2.4.1 2D view-based methods
	2.4.2 Volumetric methods
	2.4.3 Geometric deep learning & PointNets

	2.5 Upscaling point clouds
	2.6 Scene flow
	2.7 Point cloud distance metric
	2.8 Data sets

	3 Architecture
	3.1 Architectural decisions
	3.1.1 Interpolation approach
	3.1.2 Input representation
	3.1.3 Input features
	3.1.4 Output
	3.1.5 Loss function

	3.2 High-level architecture
	3.3 Downsampling
	3.4 Interpolation network
	3.4.1 Point matching
	3.4.2 Flow refinement

	3.5 Upsampling
	3.6 Neighbour snapping

	4 Results
	4.1 Data sets
	4.2 Evaluation
	4.2.1 Implementation
	4.2.2 Training
	4.2.3 Runtime performance
	4.2.4 Visual results
	4.2.5 Objective metrics
	4.2.6 User study

	4.3 Analysis

	5 Conclusion
	5.1 Discussion
	5.1.1 Limited availability of data sets
	5.1.2 Reusability of network architecture
	5.1.3 Scaling
	5.1.4 Real-time interpolation
	5.1.5 Motion distance
	5.1.6 Distortion metrics as loss function
	5.1.7 Objective metrics for evaluation

	5.2 Future work
	5.3 Conclusion

	APPENDICES
	A Data set creation
	B User study material
	B.1 Informed consent form
	B.2 Participant information form
	B.3 Video rating form
	B.4 Video viewing interface

	References

