YOGURT: A PROGRAMMING LANGUAGE FOR THE INTERNET OF THINGS (I0T)

SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF MASTER OF SCIENCE

Ivan H. GOrRBANOV
12403555

MASTER INFORMATION STUDIES
INFORMATION SYSTEMS
FACULTY OF SCIENCE
UNIVERSITY OF AMSTERDAM

2019-07-19
UvA Examiner Academic Supervisor Industry Supervisor Industry Supervisor
Title, Name || Dr Frank Nack Dr Pablo Cesar Jack Jansen Steven Pemberton
Affiliation University of Amsterdam CWI & Delft University of Technology CWI CWI
Email nack@uva.nl p-s.cesar@cwi.nl jack jansen@cwi.nl steven.pemberton@cwi.nl

X

E Centrum Wiskunde & Informatica

UNIVERSITEIT VAN AMSTERDAM

Yogurt: a programming language for the Internet of Things (loT)

Ivan Gorbanov
Universiteit van Amsterdam
Information Systems
Centrum Wiskunde Informatica
Distributed and Interactive Systems
ivan.gorbanov@student.uva.nl

ABSTRACT

As the Internet of things moves from the hands of professionals
and academics into the those of the general consumer, it becomes
increasingly important to provide the appropriate tools for inter-
action for that particular target audience. The available solutions
appear to be either powerful but too complex, or easy to use, but
lacking substantial expressiveness. This paper presents a program-
ming model and subsequent language which aim to address this
disparity by providing the right level of abstraction analogous with
the real world for simplicity. In addition, they incorporate several
concepts from established high-level programming paradigms in
order to accommodate for a large number of use cases in this het-
erogeneous domain. The proposed designed is evaluated through
user testing which shows that the presented solution is expressive
enough to facilitate the common use cases, which have become
expected by IoT users. The results also show that the language
does not present a steep learning curve as the distance between the
problem which the programmer is trying to solve and how to solve
is kept very small.

KEYWORDS

Internet of Things (IoT), Programming Language Design, User In-
teraction

1 INTRODUCTION

Since its beginnings, the Internet of things (IoT) has slowly moved
from the realm of science fiction into the mainstream. Today there
are over 8 billion linked, smart devices and that number is predicted
to exceed 20 billion by 2025 [20]. This steep increase could be
partly attributed to the increasing adoption of the technology by
the general public. Today, consumers have access to a plethora
of small, interconnected devices which allow them to automate
both their living and working environments for better convenience
and efficiency [23]. As this technology moves into the hands of
the consumer, it becomes increasingly important to provide the
average user with the right tools to interact with it in order to best
fulfill his or her needs.

Traditionally these devices are programmed through a variety
of high-level languages which allow the programmer full control
over their system. This, however, requires an in-depth knowledge
of computer programming which often takes years of training and
practice to develop and understand completely. In addition, the de-
centralized nature of the development of these technologies has led
to the incorporation of a large variety of communication protocols,
formal languages and environments [35]. Therefore, managing a
system which consists of just a few devices from various manu-
facturers, often requires knowledge of a mixture of programming
environments and paradigms. This in turn further increases the

barrier to adoption due to the steep learning curve associated with
this knowledge.

Both the consumer industry and academia have tried to address
this problem by introducing systems which act as a central control
point for the customer’s entire IoT ecosystem [2, 35]. Through these,
the user can manage the variety of devices from one environment
without worrying about any discrepancy in protocols or operating
systems between them. One such system is Igor [13]. Developed by
Jansen and Pemberton, Igor is an architecture designed to fulfil the
role of a digital butler for the smart home or office.

The latest version of Igor! already offers some powerful capa-
bilities such as access control, hiding of data-format differences,
integration of data into homogeneous collections and automatic
updates of both devices and data store [13]. However, the mecha-
nism used to configure the system is an interim solution consisting
of a basic web interface leaving much room for improvement in
both usability and expressiveness. This paper aims to extend the
work of Jansen and Pemberton [13] by presenting a new program-
ming model and a subsequent programming language called Yogurt,
which facilitate the users’ interaction with Igor.

Moreover, the research seeks to address the disparity between
expressiveness and usability that often exists in the programming
facilities of IoT systems. As these programming environments are
usually optimised for the latter, they often lack the expressive power
of traditional programming languages and therefore limit the user’s
capabilities in order to reduce the possibility of errors in the pro-
gram [24]. On the other hand, high-level languages don’t allow
the programmer to think about the problem at hand in the way it
appears in the real world. Rather, they require translating it into
algorithms logical to a CPU. This gap in the cognition, significantly
increases the complexity of the task. Consequently this paper tries
to answer the following research question:

To what extent can a new declarative programming lan-
guage, designed for the Internet of Things, achieve high ex-
pressiveness while keeping the gap small between what the
programmer is trying to achieve and how to achieve it?

The following sub questions help break down the main research
question into more manageable portions:

e Do programs written in this new language have a simple
connection between cause and effect?
o Is the programming language easy to learn?
o Does the program comply with the criteria for best practices
in programming language design?
In order to find an answer, a programming language designed
following the standard Software Development Life Cycle method-
ology [6], since a programming language is a piece of software in

!Latest Igor Version: 0.99.1

itself. [8]. The proposed design is then evaluated through perform-
ing user tests, following the Discount Method for programming
language evaluation methodology [17].

While the evaluation reveals aspects of the design which can
benefit from some improvement, the suggested model achieves
simplicity by reducing the gap between what the programmer aims
to achieve and the steps required to reach this goal. It accomplishes
this by providing the right level of abstraction which is analogous
with the real world in order to make it easier for the end-user to con-
ceptualize and therefore understand [8]. In addition, the language
described in this paper, uses encapsulation and inheritance mech-
anisms in order to allow even complex systems to be represented
with the proposed model by thinking about the subsystems and
components that make them up, therefore providing a high degree
of expressive power. While this language has been developed for
Igor, a large portion of the solution is architecture independent and
therefore could be applied to a wide variety of such systems with
minimum customization.

The rest of this paper is structured as follows. Section 2 provides
a more detailed overview of the Igor architecture and why it has
been chosen as the basis for the development of this new language.
In addition the need for a new programming mechanism is identi-
fied. The related work section then examines the current solutions
available for this need. Section 4 presents the elicitation process
and subsequent requirements for the development of the language.
The designed model is then explained in section 5 and a possible
language is presented in section 6. The work is then evaluated in
section 7 and conclusions are drawn.

2 IGOR

The following section gives a more detailed description of Igor;
this is important for this research as it will reveal certain require-
ments and constraints for the design of the language. Throughout
this and the subsequent sections, the requirements IDs (Section
4.2.1) will be used as references to their motivation. As introduced
above, Igor is an architecture designed to give unified access to
IoT devices regardless of their varying interfaces or data formats.
It achieves this by placing a functional layer of plug-ins around
an XML repository which stores all of the data generated by the
devices. The database is updated bidirectionally, meaning that every
time a device’s state changes, the corresponding values will change
in the data store. Vice versa, if the values in the database are altered,
the device associated with those values will also change its state
to reflect the new information in the repository. (See requirement
R3.2) This is achieved by the plug-ins in the functional layer, which
are responsible for contacting each individual device, listening for
any state changes (R1.6), converting the device data to and from
XML and updating the device if there is a change in the database
[13].

This system has several advantages, other than the ones already
mentioned, which make it a good candidate for this research. Firstly,
Igor is state-based (R1.5, R3.1), which allows for better abstraction of
information in comparison to event-based systems such as the ones
described in the Related Work section [37]. In addition, it utilizes
widely adopted web standards such as REST, XML and DOM which
allow the framework specific portion of the proposed programming
model to be more easily adaptable to a larger number of different
architectures without the need to be rewritten completely [13].

Finally, the project is open source and therefore all of the code is
easily accessible for implementation and testing purposes.

Currently Igor is configured through a basic text-based web
interface, which as mentioned above is an interim solution used
more for proof of concept than being designed with the programmer
in mind. The user can specify the device’s behavior by creating
“Actions”. These consist of selecting a trigger, which in most cases
is a change in the value at the specified path in the data store, an
optional condition and an action. The latter of which consists of
a REST method (GET/PUT/POST/DELETE), the URL for the entry
that is to be changed and the value that it should be changed to [13].
While the current implementation allows the user to tackle a large
variety of use cases, programming complex “Actions” involving
several triggers and actions quickly becomes difficult to manage.
In addition, the dependencies of the different programs are not
made very clear by the interface and it can be difficult to spot any
conflicts. These are all problems that the new programming model
has to tackle, without losing any of the functionality of the old
system.

3 RELATED WORK

Before starting on the design of the new model, current solutions
available to users for programming their IoT devices, are analysed.
The goal of this literature review is to discover to what extent an
existing solution is appropriate for Igor. The analysis is subdivided
into the three areas where these solutions come from in order to
allow for easier comparison as concepts from the same field will
have many common features.

3.1 Traditional Programming Languages

High-level programming languages have been the default way in
which people have bent technology to their will since their in-
troduction in the 1950s. In the last seven decades, much research
has gone into the area resulting in countless models and notations
fitting a variety of paradigms for programming computers and ma-
chines [36]. Due to the high number of languages and the time
limitations associated with this project, it would be unrealistic to
evaluate every single one of them for the purposes of this research,
therefore only the more popular languages which suit the program-
ming paradigm of the problem domain will be examined. While
there are other popular paradigms than the once listed here, such as
functional programming, they have been omitted from this paper,
as this research failed to identify any significant applications in the
IoT domain.

3.1.1 Imperative Programming. Imperative programming refers
to writing programs based on updating variables in storage. It is
one of the oldest paradigms and it still retains massive popularity
today [36]. This is partially attributed to inertia, as programmers
have been using the paradigm for so long that they are familiar
with it, but it has also proven itself to be a good way to model real
world systems. Programming languages Pascal [8], Ada [10] and
Python [21] are all good examples of the imperative style of pro-
gramming. They are powerful enough to tackle most computation
tasks. Furthermore, in the case of the first two in particular, they
run very fast as they model machine architectures quite closely
and therefore can be implemented very efficiently [36]. However,
when writing imperative programs, developers have to think in
terms of computer algorithms rather than real world applications

as imperative programs require a very precise list of instructions of
how to achieve the task at hand [8]. This is therefore very depen-
dent on the architecture where the program is being implemented
and can be difficult to generalize for a motley collection of devices
such as the Internet of Things [5]. This therefore introduces a big
barrier to adoption which is not appropriate for a technology being
assimilated by the general public. A sub-paradigm of imperative
programming is object-oriented programming. While the two are
related, the latter is examined in the next subsection for clearer
separation of concepts.

3.1.2 Object-Oriented Programming. One of the major issues with
programming ecosystems with a lot of these devices is complex-
ity. As this technology finds its way into an increasing number of
appliances, writing programs that incorporate multiple instances
can quickly become difficult to follow. Object-oriented program-
ming is a paradigm created to deal with these issues by offering
an inheritance mechanism [8]. What this means is that a complex
system can be represented as a collection of simpler ones. These are
desired qualities as users may have to deal with such use cases. One
particular example is programming an elevator which can be seen
as a collection of buttons for the floors, scale that checks the load
on the elevator, lights inside it, doors, door sensors and a motor
that makes the elevator move between floors. Programming all of
these together can easily result in code which is difficult to read,
debug and more prone to mistakes. However, if each one of those
systems is programmed separately and then the elevator object
encapsulates them and therefore inherits their properties, the pro-
gram becomes a lot more manageable while producing the desired
result. Furthermore, encapsulation allows to hide some the data of
some objects from other. This quality is also highly desirable as the
user may want to restrict the access to some more sensitive devices
such as their fire alarm.

Smalltalk [11], C++ [30] and the already mentioned Python are
all languages which fit this paradigm. However, they are proce-
dural in nature, requiring the programmer to understand memory
allocation and management and every step of the process involved
in executing the program. As stated above this is not a desirable
quality and therefore such languages are inappropriate for Igor [8].

3.1.3 Declarative Programming. Declarative programming refers
to a style of programming where the programmer specifies the
intended outcome of the program without necessarily stating each
step required to accomplish it, in contrast to imperative program-
ming [19]. This programming style seems very appropriate to IoT
applications as users should not be burdened with the details of
memory management and control flow but rather focus on the
desired behavior of their devices. As a result declarative programs
are easier to understand making them more appropriate for users
without a background in computer science [1]. This feature of the
paradigm also allows for context-independence, which means that
the language is less dependant on any framework or architecture
as the result of the program should be the same regardless, while
the step by step details are left to each individual system to decide
for itself. Finally, declarative programs are easier to analyze for cor-
rectness as the logic can be examined simply and statically without
having to compile the program first [1].

Prolog [4], Godel [12] and SQL [16] are all notable examples of
high-level programming languages which adhere to the principles

of the declarative paradigm. Prolog and Godel can be further classi-
fied as logic programming languages, where the program is a set of
rules which the system needs to follow [1]. This is a way in which
IoT systems can also be represented. For example, a program that
turns the lights inside the house on, when a user is present can
be written as the rule: 1ights—-on ¢ user—-home .However,
complex programs with many rules become harder to follow and
therefore are more prone to misinterpretation. (R2.3) In addition the
arithmetic operations are cumbersome and they might be required
to convert units in order to match sensor outputs to actuator inputs
[1]. (R1.9)

SQL (Structured Query Language) is a domain specific language
designed to be used in the creation and management of relational
databases. One of its main advantages over other languages made
for the same purpose comes from its declarative nature. SQL queries
do not need to contain specific instructions on how to reach a
particular record through indexing or other pointer mechanisms.
One simply has to specify what record they need [16]. In addition,
the language uses very readable keywords as commands, making
it easy to follow and understand. While these features are both
desirable for the new model proposed in this paper, SQL comes short
in some of the arithmetic and control flow operations, therefore
making it unsuitable for the problem domain as these will most
likely be required [7].

3.2 Event-Based Frameworks

Recent years have seen the rise of event-based trigger-action frame-
works designed to allow users to create automated tasks [18]. These
frameworks have gained popularity within the research community
due to their simplicity [24]. The models allow the specification of
the device’s behavior as a set of if-this-then-that rules. This ap-
proach is very much declarative in nature as the users only have to
concern themselves with the logic followed by the devices rather
than control [19]. This further supports the conclusion from the
previous subsection, that the declarative paradigm is the preferred
choice for the language presented in this paper.

Two of the more popular representatives of this approach are
IFTTT 2 and Zapier 3 . Both platforms allow users to automate
tasks across multiple devices and online services. This is achieved
by specifying an event as a trigger (ex. alarm clock goes off) and a
desired action (ex. lights come on). Each pair of trigger and action
is known as a recipe or a zap in IFTTT and Zapier respectively [24].
While both frameworks have proven very effective for simple tasks,
they are both limited to one trigger per recipe/zap and while Zapier
allows for the inclusion of conditions in the form of filters as well
as several actions per zap, both frameworks fail to allow their users
to specify more complex tasks with multiple triggers and actions
[24].

Architectures such as homeBlox [35] aim to address these issues
by providing a selection of common logical operators (and, or) and
removing any limits in regard to number of actions or triggers.
However, homeBlox’s programming model does not provide a fa-
cility to deal with different users/home occupants and have the
system react depending on who is present in its environment [35].

One of the main advantages of these frameworks collectively
is that they are all presented to the user in a GUI which helps

https://ifttt.com/
Shttps://zapier.com/

eliminate some of the intimidation that textual representations
might pose to the novice user. It also eliminates the possibility
of bugs in the programs caused by typing errors [34]. The visual
programming approach has been utilized by other IoT programming
tools such as NodeRed *. The JavaScript based framework is much
more powerful than the other solutions examined in this section,
however the abstractions are at a much lower level [26]. Therefore,
the distance between implementation and desired goal is too great
for the approach to be easily adoptable. Nevertheless the advantages
of graphical representations make a GUI for the model a worth while
implementation to explore.

3.3 Commercial Platforms

As mentioned in the introduction, there are a variety of commercial
solutions available, which like Igor, act as control centers for IoT
ecosystems, eliminating any concern regarding the heterogeneous
nature of IoT devices. Prime examples of such systems are Alexa
>, WinkHub ¢ and Homey [2]. Alexa and WinkHub both provide
very attractive graphical interfaces. However, they utilize IFTTT
and therefore inherit all of its shortcomings, detailed in the pre-
vious subsection. Homey has a complete graphical programming
environment which allows the users to build scenarios in which
the systems performs tasks automatically. These are referred to
as “Flows”. Individual flows follow the when-and-then principle,
which is similar to if-this-than-that: an event is selected to act as a
trigger and an action is executed. The framework expands on the
basic IFTTT by using logical operators which allow the combina-
tion of multiple triggers and actions. Conditions are also possible in
order for the “Flows” to be dependent on the current environment.
The abstractions used are a lot closer to the objects they represent
in the real world therefore making it easier to understand than
the abstract elements used in NodeRed. These objects however are
predetermined and therefore the end-user is limited in their capa-
bilities by the imagination of the programmer of the system. It also
means that the system requires continuous updates of cards as new
technologies become available, making it high maintenance and
reducing expressiveness [2].

3.4 State of the Art Summary

It is clear that, while there are many solutions available, none
seem to be entirely appropriate for Igor. In addition, the literature
review further identifies the gap between programming models
which provide great expressiveness at the cost of a high learning
curve and those which are very user friendly but lack applicability
in more complex use cases. Nevertheless, certain aspects of the
presented state of the art appear very effective in tackling some
of the challenges. The declarative programming paradigm offers
the context-independence which appears to be crucial in such a
heterogeneous application domain (R1.4). The abstraction from
memory management and specific imperative instructions helps
reduce the learning curve by allowing the programmer to think in
terms of what they want to achieve rather than how to, which is
more appropriate for a technology used by the general consumer.
The inheritance mechanism from object-oriented programming is a

4NodeRed website: https://nodered.org/

S Alexa website: https://www.amazon.com/Amazon-Echo-And-Alexa-
Devices/b?ie=UTF8node=9818047011

SWink Website: https://www.wink.com/products/wink-hub/

good way to achieve high expressiveness while keeping complexity
low (R1.3). Furthermore the encapsulation mechanism offered by
the paradigm, allows for easier to read code as the data and methods
that act upon it are kept together in the same block. Additionally
the feature allows for higher security when dealing with system
critical devices (R1.2). The commercial environments show that
providing programmers with abstractions which are analogous to
the real world objects they represent (R1.1), greatly improves their
usability by programmer who are not as experienced. IFTTT and
Zapier also make a good case for keywords (If this, then that) and
concepts which resemble the way humans would think about the
problem and more importantly its solution (R2.2).

4 REQUIREMENTS ELICITATION

Most design methodologies start with answering the question
"What is it that we are designing?" or in other words what are
the requirements for the final output of the process [28]. This study
is no exception. The first step of the elicitation process is making
sure that the language is expressive enough to facilitate common
use cases. These are drawn from academic literature, as well as
from an analysis of the applications of the available commercial
platforms. In addition, section 3.4 outlines some non-functional
requirements elicited through the analysis of the related work in
the field. Finally, using Igor as the case study for the development of
this model brings some constraints to the design. However, some of
these may not stand if the model is to be implemented in a different
framework. Instead others may be introduced.

While this list is meant to cover all of the bases, it is by no means
exhaustive. The decentralised nature of the development of this
technology means that it is applied in many different ways and
one complete list of its desired capabilities and applications is non-
existent. In addition, new applications keep appearing constantly
and therefore covering all of them in the scope of this study is
unrealistic due to the time constraints associated with it. Therefore
the requirements listed in this section are meant to be as broad as
possible in order for the language to apply to as many use cases as
possible and while everything is initially motivated by literature
or existing cases studies, the final selection of what was important
and what not was left to the discretion of the research team.

4.1 Use Cases

Within the boundaries of the consumer market, IoT technology
finds some of its most popular applications in the area of home
automation [15]. The main objectives being increased efficiency in
the usage of utilities and resources [31], higher comfort through an
adaptive environment [14], enhanced security for the occupants and
fault detection to minimise any adverse effects that an overlooked
malfunction may have [25].

The following subsection describes the behaviour of a house
which is fitted with all of the required sensors and actuators as
well as an Igor system to control them. It outlines the context in
which the user finds themselves in, as well as the behaviour of
their IoT system in that context. The use cases are presented in
the form of a scenario, as according to Ramirez et al. [27] it is a
methodology which helps produce more interesting research with
a broader outlook. The story line is chosen in order to illustrate at
least one instance of the above mentioned applications. In addition,
it depicts a mixture of different programming challenges so that the

use cases can be most exhaustive. The situations from the scenario
will be used throughout the rest of this paper as example programs
to demonstrate the language capabilities and syntax. Furthermore
the scenario is representative of the use cases found on current
popular commercial platforms, [2, 22] therefore ensuring that all of
the capabilities which current users have already come to expect
from the technology are there.

4.1.1 Scenario. Jack is a 30 year old light technician who lives in
Amsterdam and works at the city theater. He has a wife called Jill,
who is a nurse. Their home is fully equipped with an Igor system
and all the latest sensors and smart appliances. When Jack comes
back home from work around 18:00, he unlocks his door with a
key card. As soon as the door opens the lights come on, as it is
winter and the brightness sensor outside the door tells Igor that
it is dark. The LED lighting shines in a warm yellow color as it is
cold outside and Igor tries to create a warmer atmosphere inside.
As Jack walks in the house, the door locks behind him and his
favorite playlist starts playing through the stereo. As Igor knows
that Jack is alone, the volume is set quite high (R1.8). An hour later
Jill comes back from work. The music reduces in volume so that
Jack and Jill can have a conversation more easily, it also switches
the playlist to something they both like. Around 23:00 the lighting
in the house dims automatically prompting both inhabitants that
it is time for bed. As Jack goes to bed, the pressure sensor in his
mattress turns on the light on his night stand. When Jill joins
him, the main light goes off and her nightstand also illuminates.
The smart wall sockets switch off and turn the power off to all
unnecessary appliances such as TV, toaster, washing machine etc.
to conserve energy overnight while they are not being used. The
thermostat lowers the temperature until half an hour before Jack
wakes up at 7:00 (R1.7). When that time comes, Jack’s morning
playlist starts playing through the speakers and the lights come on
and slowly start increasing in intensity. As soon as Jack gets out
of bed, the lights in the bedroom dim again and the music stops in
order not to disturb Jill, as it is a Wednesday and her agenda shows
she has the late shift at the hospital. When Jack goes in his kitchen
the lights come on, and his morning playlist starts playing through
the speakers there. He finds a cappuccino waiting for him at his
coffee machine. He drinks it and leaves for work. The door locks
10 seconds after he has left.

4.2 Requirements

In order to program an IoT environment to behave according to the
scenario described above using Igor and the required devices, Yogurt
will have to meet the following requirements. Each requirement is
given a unique ID, which are used as references to its motivation
throughout this paper for the convenience of the reader.

4.2.1 Functional Requirements.

R1.1 The programming model must provide an abstraction for
IoT devices

R1.2 The programming model must provide an encapsulation
mechanism

R1.3 The programming model must provide an inheritance mech-
anism

R1.4 The programming language must comply to the principles
of the declarative programming paradigm

R1.5 The programming model must be able to represent the state
of devices

R1.6 The programming model must be able to facilitate state
changes as triggers for other events/state changes

R1.7 The programming language must allow the user to schedule
events based on time

R1.8 The programming model should provide a facility to deal
with conditions

R1.9 The programming language must allow the programmer
to convert the units of a sensor output to the units of an
actuator input through mathematical operations

4.2.2 Non-Functional Requirements.

R2.1 The programming language must comply with the criteria
for good programming language design (Section 3.4)

R2.2 The keywords used in the language should be unambiguous

R2.3 The language model should enable the programmer to code
in such a way that all dependencies can be tracked easily

4.2.3 Constraints.

R3.1 The programming model must be state based.
R3.2 The programming model must allow making state changes
triggers

5 MODEL

Programming languages are software tools which describe the be-
haviour of a system by modeling it using abstractions [29]. There-
fore a crucial step of the design of a new programming language
is deciding what is the best way to model the domain which the
programming language is trying to facilitate.

5.1 Abstractions

5.1.1 Actor. As already mentioned, the Internet of Things is made
of devices. Therefore, the top level abstraction, called Actor, in the
presented model, fulfils this purpose. Actors are any devices (sen-
sors, actuators, etc.) that are part of the user’s IoT ecosystem. For
example an LED light, a smart TV or even just a simple light switch.
The common feature between actors is that they change their own
state. (Section 5.1.3) All the other abstractions are children of an
actor. This should make the model easier to conceptualise as it is
analogous to the real world. More specifically, the actor abstraction
is similar to a class definition in an object-oriented programming
language such as Smalltalk [8]. It describes the behaviour of a
particular type of device. To elaborate, if a user has two presence
detection sensors (PIR) and four lights, provided that the sensors
behave the same way, he or she will need to create one actor to de-
scribe their behaviour and another to describe the lights’ behaviour.
The user will then have to construct two instances of the PIR actor
and four of the lights actor and connect them as appropriate. This
feature of the model allows the reuse of blocks of code making
writing programs for large ecosystems, with a lot of instances of
the same device, a lot more efficient. Furthermore, it gives Igor the
potential to be adoptable by novice users, as the system can come
pre-loaded with a library of standard device behaviours. Therefore,
leaving only the connecting of physical devices to behaviours, to
the user. This is similar to the set up of the Homey programming
environment discussed in section 2.3 and it will bring the same
advantages.

5.1.2 State. As mentioned in section 3.1. Igor is a state based sys-
tem. In this context, a device’s state refers to every unique combina-
tion of values of its properties. For example, an LED strip typically
has five state attributes: three values indicate its color (one each for
R,G,B), one indicating its intensity and the last one indicating the
count of illuminated diodes on the strip. Changing the value of any
of these five attributes results in transitioning the LED strip from
one state to another.

Hence the first and perhaps most important child abstraction of
Actor is state. An instance of it could simply consist of one value
for one attribute such a light switch, where the state will be simply
represented by one Boolean value depending on whether or not the
switch is active or not. Alternatively it can be made up of several
values for more complex devices such as the LED strip example in
the paragraph above.

5.1.3 Action. Since the device’s abstraction is called an "Actor", it
makes sense to call its activity "Action". In the presented model an
"Action" is nothing more than changing the state of an actor by
altering one or more values associated with its state parameters.
The realisation that performing an action is nothing more than
changing values in the data store is an important one here, as this
simplicity is not only essential to the model but it is also what
removes the need for APIs to each individual device. Each actor can
have the ability to perform multiple actions, however an Action can
only change the state of an actor that it belongs to. For example,
an LED strip could have an action which changes its color, but it
cannot contain an action which changes the temperature of the
thermostat in the user’s house. This is done for security reasons [36]
as well as to force the programmer to keep all of the dependencies
of a particular state in one place, making any conflicts easier to
identify. An action consists of two child abstractions: trigger and
guard. Each is detailed below.

Trigger. A trigger is designed to represent the event which sets
off an action. In a state based system such as Igor, this is simply
a listener for a change in a state attribute value of another actor.
This can be illustrated with another use case form the scenario in
section 4.1.1. In it, Jack’s LED lights come on when the PIR sensor
detects Jack’s presence. Therefore the state attribute "presence” of
the actor "PIR" is the trigger of the "turn on" action, belonging to
the "LED light" actor. However, this is not enough as Jack will not
want his lights turning on while it is still light outside and therefore
there is plenty of natural light in the room. Therefore the model
should provide a mechanism to describe the conditions which have
to be satisfied for an action to execute.

Guard. A guard is the abstraction which facilitates the condi-
tions upon which an action is executed. It is an expression which
evaluates to either true or false. If the guard is true, then the subse-
quent code gets executed. In the case of the model provided these
conditions simply describe a state of the user’s IoT ecosystem or
more specifically the state attributes which matter to that action. So
in order to achieve the desired behaviour, Jack will need to not only
program the "presence" trigger of the action but also set up a guard
which checks if the state of the dusk sensor shows that it is night
and the sun has set. This guard will consist of an expression which
only evaluates to true when the value of the actor "dusk sensor"’s
"night" state is true.

Some actions may have different results depending on the condi-
tions which are satisfied by the rest of the environment. Therefore
several different guards can be nested under one trigger, with the
state update expressions underneath them. Each trigger only listens
to one state attribute value changing, once the change occurs it
then checks the guards underneath it. This design is motivated by
computational efficiency as only the relevant conditions will have
to be checked once a trigger occurs, rather than running through
all guards every time a value somewhere in the system changes [8].
While a strong case can be made for having allowing the guards to
work as an implicit triggers, separating the two, allows for some
more complex functionality in the language implementation of the
model. (See section 7.2)

5.1.4 Timer. Section 4.1.1 describes several use cases where time
is of importance. One type is where the system reacts to a specific
time occurring, such as it becomes 23:00 on a given day oritisa
Wednesday. The other type of use case is where an event occurs
after certain time has elapsed following an action, such as the door
locking 10 seconds after Jack has left the house. In order to facilitate
this the model includes an abstraction, which can be classed as a
special case of an actor, called timer. The latter use case is achieved
as follows. Similar to an actor, the user can set up a trigger listening
for a change of state of any other actor in the system to start it. The
user also needs to pass an argument to specify the duration of the
timer. The abstraction has its special "timer" state attribute which
changes between zero and one every time the timer starts and the
specified duration elapses. Action which are then dependent on
this timer need to be set with triggers listening to this state value.

In the event that a user is only interested in a specific absolute
time reference, such as 23:00 on Wednesday the 23rd of June, the
user can set up a guard which checks the second state attribute of
the timer abstraction, "absolute time". This attribute is configured
to display the system time of the device which acts as the Igor
server. The difference here being that this state attribute cannot be
changed by an action but rather changes itself automatically based
on the system time.

Similar to the normal Actor abstraction, a user can have multiple
instances of the timer objects running independently of each other
in order to satisfy different unrelated processes which require this
functionality.

5.2 Model Features

Figure 1 shows a graphical representation of the model for the
proposed language, which depicts how the above mentioned ab-
stractions fit together and interact with each other. The one missing
from the diagram is the timer, however that could be treated as
a special actor case and therefore will follow the same logic. The
model allows for several different features, described in detail in
the following subsections. These features make the resulting pro-
gramming language multi paradigm.

5.2.1 Declarative. A reoccurring conclusion in the related work
and an enduring requirement is that the programming language be
declarative. The model has been designed by constantly referenc-
ing this requirement and as such all the abstractions included are
ones that describe a desired behavior and end state. Abstraction
for memory and complex control structures have been omitted as

Actor

Action - Action

Update Expression Update Expression

Figure 1: Programming Model

such constructs are not typical for the declarative programming
paradigm [8].

As a result, the model does not suffer from the complexity that
memory management and control flow bring to a programming
task [19]. It also makes the solution context independent as the line
“"turn LED on" should turn the led light on regardless of weather
the model is implemented in Igor or another system like Homey.

5.2.2 Object-Oriented. As already mentioned, the "Actor" abstrac-
tion is a concept borrowed from class definitions in object-oriented
programming. This not only allows for the more efficient programs
by reusing the same block of code over and over again as appropriate
but it also allows for encapsulation and inheritance. Encapsulation
refers to the bundling of data with the processes which operate on
it. In the case of this model, it is the state attribute values with the
actions that change them. This is done not only for convenience,
but also in order to hide certain information from other actors for
security reasons. This attribute becomes important for use cases
where states are critical to the operation of the IoT environment
[36]. One example is that the user doesn’t want to allow other actors
to be able to change the state of their fire alarm.

The other object oriented concept is that of inheritance. In the
model described in this section, this is achieved by allowing an
actor to be comprised of other actors. Therefore giving the top level
actor access to all of the actions and states of its children. This
helps represent complex systems, such as the elevator example
from section 3.1.2, as a collection of smaller sub systems in turn
making them easier to manage and write [9].

6 LANGUAGE

In order to turn the abstract model into something usable by the
IoT community, this paper proposes a language based on it, called
Yogurt. The following section presents the possible text representa-
tion through example code (Appendix B-F), the features of which
are then explained.

6.1 Program Structure

It is a tradition in the programming community to introduce a new
language by showing how to write the simplest program which
outputs a "Hello World" message. While outputting a message is
not really the core aim of this programming language, this paper
tries to honor that tradition by showing a simple example of a
program which facilitates the kitchen light being turned on and off

with a switch. (Appendix C) The lines starting with a hashtag are
comments to help the reader find their way through the code.

The example helps depict the three main parts of a Yogurt pro-
gram:

6.1.1 Actor Definition. The first and most complex section of the
program is the Actor Behaviour Definitions. This is the part in
which the user can define the actors which make up their IoT
system and more importantly specify how they want to behave.
Each definition starts with the keyword actor followed by an
identifier, brackets to specify any inputs and a colon. Inputs in this
context refer to other actors which interact with the one being
defined. In the given example the "light" actor receives input from
the "switch", while the "switch" actor is passive and therefore does
not receive any inputs. It is important that the name written in
the inputs matches the ID given to that actor. Multiple inputs can
be separated by commas. If an actor needs to receive inputs from
multiple instances of another actor class, this can be done by giving
each instance a unique ID and using that inside the actions section.
(Appendix D)

The language uses indentation to signify a block of code rather
than brackets. This is consistent throughout the whole program
and it is a choice motivated by readability [8]. As per the model
described in the previous section an actor contains states and ac-
tions. As seen in the provided example (Appendix C), each of these
child abstractions has its own section in the textual representation
started by the corresponding keyword.

States. This is the part of the program where the user can assign
state attributes a local name to be used later in the actions. In the
example we see that both types of devices have one state attribute
each, the switch is on which can be true or false and the light is
illuminated which is also a Boolean value. On the right hand of
each statement is the expression which points to the location of
that state attribute in the data store. As Igor is XML based that path
is written using the XPath syntax. The user-assigned names of state
attributes are only unique locally within that actor, in other words
a programmer can have multiple different actors that contain the
state "on".

Actions. This section contains the meat of the logic and be-
haviour of the program. The action is really comprised of three
parts itself: a trigger, a guard and one or more update expressions
which actually performs the action since, as already mentioned, an
action is nothing more than updating a state attribute value. The
action starts with a trigger. This is specified using the on command
followed by the state which is being monitored for a change. The
example found in Appendix B, uses the "on" state attribute of the
switch as a trigger, therefore every time that attribute changes its
value, the code following the statement will run. In the given ex-
ample, there is no need for a guard so the update expression of the
language then follows. This is constructed by specifying the state
attribute of the actor which is being updated, followed by the up-
date operator ("<-") and the value to which it is being updated. The
language restricts this value to be one of the following types: string
(surrounded by quotation marks), number (both integer or floating
point is accepted), Boolean (True/False), another state attribute
like in the example or a function call. The update expressions are
executed atomically, in other words all together and there is no
sequencing. This means that if the programmer has put the same

state attribute to be updated twice on the left hand side or used a
value that gets updated by that block on the right hand side, the
compiler will return an error.

Config. There is one additional part of the actor definition and
that is the "config" section. It is an implementation detail, which
deals with the connection between the underlying architecture, in
this case Igor, and the abstractions presented to the user. As this
section will have to interact with the device’s plugins, it will have
to be written in a different programming language, since this is
functionality that is considered beyond the scope of this research
and the presented programming model. This is because there are
already many languages which do this well. Furthermore, in order
for the implementation to be able to work with the biggest number
of devices a more common language should be used such as C
or Java. It is therefore not a section which has an effect on the
presented model and therefore shall not be discussed in detail in
this paper.

6.1.2 Actor Instantiation. The Actor behaviour definitions work
similarly to class definitions in an object-oriented programming
language. After specifying the behaviour the programmer has to
create an instance of that actor and tie it to the address of the
physical device it represents. In Yogurt, this can be done in one
statement. The instance is given a unique identifier, followed by an
equals sign, followed by the actor behavior identifier. The path that
references the device record in the XML database is then given in
brackets. For Igor, this is done in XPath. 7

6.1.3 Actor Connections. By this point of the code, Igor knows
how to reach the physical devices and their behaviour. It now needs
to connect the instances of the devices to one another. This is again
done through a straightforward statement. The unique identifier
of the instance of the device, where the inputs are coming into, is
given followed by a dot and the command "input". The identifiers
of the inputs as specified in the actor definition are used followed
by an equals sign and the unique identifier of the actor instance
as it appears in the actor initiation section. Because of the explicit
nature of using both unique identifiers, the order in which these
are written does not matter.

Now that the basic program structure has been covered, the
following subsections explore, in more detail, the advanced features
of the language.

6.2 Triggers and Guards

Triggers and guards are the two child abstractions of the actions and
while the simplest form of them was presented above, they can be a
lot more powerful in order to accommodate for more complex use
cases. Appendix E shows an example of the action section of a light
actor which gets triggered by a presence sensor (PIR) and a dusk
sensor. In addition the light is an LED strip which can change colors
depending on the temperature outside, measured by a thermometer.

The provided example once again uses the trigger construct. It
is then followed by a guard, implemented using the when keyword
followed by brackets containing an expression (state attribute) fol-
lowed by an comparison operator (<,>,=,!=) and another expression
(value or another state attribute). If the expression between the
brackets evaluates to true then the block below is executed. Guards

Thttps://www.w3.0rg/TR/2014/REC-xpath-30-20140408/

also contain implicit triggers. In other words, they will get reeval-
uated every time one of the state attributes which they contain
changes. Guards are not mutually exclusive and therefore multiple
guards can evaluate to true at one time. For convenience the else
keyword is allowed to be used so that the programmer can specify
an action for the block of code in the case that none of the guards
evaluate to true. This however is only allowed under an explicit on
trigger.

Lines 3 and 5 of the above listing also show the use of two other
convenience features of the language. whenall and whenany are
both designed to allow the programmer to write cleaner code which
is easier to read and less prone to mistakes. whenall (Expression
A, Expression B) means the same as when (Expression
A) AND when (Expression B) Nesting guards into one an-
other will also achieve the same effect. While whenany (Expression
A, Expression B) means the same as when (Expression
A) OR when (Expression B)

6.3 User Defined Functions

The example shown in Appendix E also illustrates the use of the user
defined function ChColor. As the language restricts what the user
can put on the right side of the assignment operator (See section
6.1.1) the programmer is forced to do any arithmetical operations,
conversions or more complex checks in separate functions. In the
example provided, the function takes in the temperature and returns
the appropriate red, green or blue value that the LED light takes as
a state. The function needs to be defined in a separate block of the
program, outside of the actor definition and can be used globally.

In the current version of the language, these functions have been
defined using Python, as it is a language which already provides
great facilities for mathematical operations. Future implementations
of the language can also allow these to be defined in more than one
language such as JavaScript or PHP in order to give the programmer
the option to use the one they are most familiar with. In addition
libraries of standard operations can also be provided to save the
programmer the need to define them all together.

6.4 Time

As per requirement R1.7, the proposed language should allow for
programmer to reference time in their program. This is the purpose
of the timer abstraction described in section 6.1.4. Appendix E
shows an excerpt of code from a program which unlocks and locks
a door with an RDF reader. In it the timer is used to facilitate the
functionality that the door needs to lock 20 seconds after it has
been unlocked.

As already mentioned the timer is actually an actor which in this
representation is called "time". Its t imer state lets you set a desired
duration after which the block of code nested bellow it gets executed.
time.time on the other hand lets the programmer create expressions
which evaluate to true only at the specified moment. These can be
used in guards to check that a specific action happens at a precise
time. Different arguments can be passed through for different needs.
For example t ime . t ime (month=July) evaluates to true every
July while time.time (01/05/2020) evaluates to true on the
1st of May 2020. The last page of the sample sheet provided in
Appendix J contains complete list of arguments and options that
can be used with the time actor.

6.5 Complex Actors

Section 6.2.2 explains about the inheritance mechanism which the
model provides and how complex actors can be built of other sim-
pler actors. Appendix G shows the actor definition of a fridge, which
is made out of 3 other actors, each representing one of the fridge’s
different subsystems. The parent actor is then given states, which
do not refer to a path in the database but rather to a state attributes
from its child actors. These attributes can then be accessed by other
actors which take the fridge actor as an input. The rest of the states
of the child attributes stay hidden to the rest of the system.

7 EVALUATION

This section presents the evaluation procedure undertaken as part
of this research. The goals of the activity are first specified, followed
by the methodology. Finally the results are presented and discussed.

7.1 Goals

The main goal of this evaluation is to test the proposed program-
ming language design with some users and see if it is easy to pick
up as well as if it satisfies the gap stated in the research question. In
order to achieve this the following atomic queries have been used
to make the research question more manageable:

o Is the language easy to pick up and use?

o Are the abstractions of the model at the right level to keep
the real world problem and its implementation as close as
possible?

o Is the programming structure easy to understand and apply?

7.2 Method

Even though the development of programming languages has now
reached a certain maturity with a well established approach, the
same cannot be said for their evaluation. Both evaluation method-
ology and criteria are often areas where the academic community
tends to disagree and according to Kurtev et al., universally accepted
options for either have not yet been established [17]. This study
utilises the Discount method for programming language evaluation
as the main evaluation strategy due to its suitability for languages
at their design stage rather than at the end of the development
cycle. In addition the method allows for a more empirical approach
at a much smaller cost compared to the other methods centered
around user testing [17]. Even though the procedure followed quite
closely the one specified in the above cited paper, the following
subsections give the details of the experimental setup for this study.

In addition unstructured interviews were conducted with the
test participants in order to gain a better insight into how the users
perceived the various language features and how it compares to
others they have used. As part of the evaluation process the test
participants were also asked to score the language on the criteria
for good programming language design as outline by literature.
The chosen criteria are: simplicity, uniformity, abstraction, safety,
modularity, expressiveness, efficiency. The criteria is consistent
between various sources on the subject [8, 33].

7.2.1 Participants. In total six participants were selected for the
study including one for the pilot test and five for the rest of the
trials. According to the research conducted for this project, there is
a lack of studies which suggest that IoT adoption or programming

skill has any correlation to gender or age, therefore while demo-
graphic data was gathered from the test participants, it was not
used as a selection criteria. What was important is that the test par-
ticipants had at the least a substantial experience in programming.
This would allow them to think more critically about the language.
In addition, the languages already in their arsenal will allow for
direct comparison. Another requirements for selection was the the
users had at least a vague idea of the IoT domain as a whole. This
requirement makes it the test more realistic as it is reasonable to
assume that people who will be interested in the language will
also be vaguely familiar of what they want to do with it and how
the concept works. Last but not least, some of the participants had
some experience in programming IoT devices which allowed them
to do a direct comparison between some of the solutions described
in section 3 and the new proposed language. A detailed breakdown
of the participant infromation can be found in Appendix G.

7.2.2 Test Set Up. The set up used during the test involved a laptop
running Notepad++ 8 with two views. On the left hand side was a
blank file where the test participants could write their programs. On
the right side of the screen was a file containing the XML database
where Igor stored the information about the devices which they
had to use in their programs. The participants were provided with a
sample sheet (Appendix C), which explained the code with examples
and a task sheet containing five task (Appendix D), each of which
tested different functionality of the language. The test participants
were given sixty minutes to complete as many tasks as possible,
however as time was not an important factor in this study, that
requirement was flexible and the participants were allowed to finish
the task they were on, even if the time ran out. A portable audio
recorder and screen capture was also used to record their efforts.

7.2.3 Interviews. After the test had finished, an unstructured in-
terview was conducted to gain some more insight into the user’s
thoughts about the language. Before the interview, the participants
were made aware of any major mistakes in their code so that they
could comment on how the language actually is meant to be used
rather than how they think it is. The interview was recorded with
the portable recorder, then transcribed and coded in order to extract
more meaningful qualitative data [3]. The interviewees were also
asked to score the proposed notation on the following criteria for
good programming language design. A Likert scale was used for
that purpose where 1 was the lowest and 5 is the highest [32].

e Simplicity: The language should have just a few basic con-
cepts which make it easy to understand [8]

Uniformity: The basic concepts should be applied universally
without change in their form [36]

Abstraction: are the abstractions provided appropriate for
the application domain [8]

e Safety: Are semantic errors easy to make and detect 8]
Modularity: Interfaces between the different units should be
made explicit [8]

e Expressiveness: The language should allow for a large variety
of programs from the domain to be expressible [36]
Efficiency: The language should enable the programmer to
produce efficient code [8]

8https://notepad-plus-plus.org/

7.3 Results

The following section presents the results achieved by the evalua-
tion methodology. The results here are grouped and summarised
by categories. A full list of the results can be found in Appendix E.
The treats to validity are also examined.

7.3.1 User Testing. During the user testing, the mistakes that the
participants made were recorded and categorised in three categories
as per Kurtev et al. [17]:

Critical. These are fundamental misunderstandings of the lan-
guage structure and programming model. The mistakes which fall
into this category were:

o Test participant did not understand that the input names
given in an actor input, need to match the names given to
those actor classes. This is done to allow for some error
checking and therefore the compiler would return an error
when trying to execute the input command in the linking,
since that class of the actor trying to be input will not match
the one that is expected by the actor receiving the input.

e Participants also tried to assign data to temporary or sup-
port variables in the action section. This is also something
that is not allowed by the model. This was something every
participant tried to do on at least one of the tasks.

o All participants but one ignored the restriction of the type
of values that can go after the assignment operator in the
actions section of the code and performed mathematical
operations directly.

o Another aspect which appeared problematic on more than
one occasion was the use of the "time" object. Participants
did not seem to understand what the expressions outputted
and how it operated and therefore it was either placed at
the wrong place or used as part of expressions which did
not expect it. In some cases it was missed out all together,
however that is considered to be more of misunderstanding
of the logic of the program rather than a problem with the
language construct.

e Three of the participants had problems with assumptions
of implied logic. In other words, they only specified half of
the actor’s behaviour, assuming that the reverse is implied
in the logic of the language.

o In the cases of the more experienced programmers there
were a few instances where they were introducing concepts
from other languages as the syntax reminded them of them
and therefore they assumed that they are allowed.

Serious. These are structure errors which will result in a program
which fails to produce the intended output or one at all, but can be
fixed with small changes

e Usage of disallowed operators such as AND and OR

e Using the else construct without an explicit trigger (on),
which results in the compiler never evaluating the update
expression as it doesn’t know what to changes to listen out
for to trigger the action.

e Another aspect that was commonly missed was the explicit
assignment in the linking of devices section. Example: lightK-
itchen.input(switchKitchen) instead of lightKitchen.input(switch
= switchKkitchen)

Cosmetic. These are typos and small syntax errors that can gen-
erally be fixed with a couple of character changes.

e Use of "=="instead of "="

e Use of "=" instead of "<-"

¢ Indentation missing or colon after a statement which expects
it

e Typos in names of variables

Other Observations. A trend appeared that the participants who
knew more languages were making more errors than those who
knew less or had less experience. This is most likely caused by
more assumptions made on their part, rather than just sticking to
what the sample sheet showed. It also appeared that since most
of the participants had experience with imperative programming
languages, they tried the tasks with that mindset and tried to incor-
porate aspects of that paradigm rather than keeping their programs
declarative.

The else construct, while not explicitly shown on the sample
sheet, was another favorite of all of the participants. Test subjects
were also unsure of the time construct, however after some clari-
fication they said that it makes sense and therefore it is probably
just not explained very well in the sample sheet.

Participants also liked the whenany and whenall conveniences,
however they expressed doubts towards having to list all of the
state and a couple of them suggested having a default where the
states section gets populated automatically with the same names as
the state attributes appear in the database as the explicit assignment
might be too laborious for complex devices with a lot of states.

7.3.2 Interviews. After transcribing them, the interviews were
coded in order to make better sense of the results [3]. The following
conclusions were reached.

o After completing the first task, all participants agreed that
the language is very straightforward to pick up. "I thought it
was really intuitive to begin with it” (Participant 2)

e Four out of the five participants explicitly mentioned that
the abstractions provided really helped them think in terms
of the problem as it is presented in the real world, rather than
having to translate it to abstract computer science concepts.
This is perhaps the most important observation, as it directly
answers the research question posed by this study. In addi-
tion, it not only made the program easier to write, but also
saved time as they didn’t have to worry about the processes
happening in the background. “just the whole idea that you
have your states and you know, your actions and everything
that happens in the background is abstracted from you is a big
time saver, I think.” (Participant 3)

o All of the participants agreed that while they can see that the
same results are possible to achieve with other languages,
they could appreciate that with the presented model the
tasks will be a lot quicker and more efficient to complete.
"it’s pretty well defined. I think that it’s designed for this task,
and you can see that.” (Participant 5)

e The majority of the participants discussed how they can see
this language becoming very easy to adopt with the addition
of a few standard libraries of functions and device behaviours.
This way even really novices can utilise it fully. “there could
be some other method where you don’t have to define things
so much” (Participant 4)

The table in Appendix I shows the results of how the participants
scored the language on the above mentioned criteria.

7.4 Discussion

The tasks presented in the evaluation procedure showed that the
language satisfies all of the functional requirements presented in
section 4.2. In addition, while the results revealed some aspect of
the language that can benefit from being redesigned (Section 9.1),
the evaluation procedure revealed that the language presented does
in fact reduce the gap between what the programmer is trying
to achieve and how they actually manage it. The study therefore
manages to answer affirmatively the question it sets out to. The
abstraction accomplish exactly what they were designed to do, that
is to allow the programmer to think in terms of the real world
problem and not have to translate the domain into metaphysical
concepts in order to be able to fit into a programming paradigm.
As shown by the user test, it doesn’t take too much to explain the
language fully to someone who has never seen it before. This is
further a testament to the model’s simplicity and how a few key
concepts can be applied to solve a variety of use cases.

Furthermore, the test participants all scored the language highly
on all of the criteria for good programming language design. The
efficiency criteria received the lowest score due to the fact that
participants did not like the restrictions on values in the update
expressions, however they agreed that the addition of a standard
library of functions which will save them the hustle to specify them
themselves should resolve that issue. The expressiveness criteria
also received a lower score, however two of the participants who
gave them admitted that they did not feel confident enough to score
the language highly on this criteria, as they felt that their knowledge
of the domain is fairly limited. Nevertheless, they confirmed that
the language seems powerful enough to facilitate the use cases
which they have in mind. This concern also represents the biggest
threat to the validity of these results. The small number of test
participants gives rise to high proportion of bias. A user study with
a higher number of participants at a later stage where a compiler or
IDE can produce some feedback to the users will help alleviate this
problem. While the user’s were all experienced programmers, their
knowledge of the IoT domain was relatively limited. This poses
some treat to the validity of their evaluation of the expressiveness
of the language. Performing further test with domain experts will
be advantageous. However as the results were consistent between
all testing trials and therefore considered to be robust.

8 FUTURE WORK

Based on the results of the evaluation and the some of the opportu-
nities identified in the related work section, this research can be
expanded with the following future work:

8.1 Language Improvements

Even though the current form of Yogurt was received well by the
test participants, the evaluation process revealed some possible
improvements:

o Provide a default for the state section. As stated in the results
section, a couple of test participants noticed that a lot of the
time they use the same names for state attributes as the once
already given in the data store. Therefore, it was suggested

that there should where they are allowed to use them without
specifically rewriting them.

The code produced by the test participants involving the
use of AND and OR operators in the guards reduced the
readability of the blocks, therefore these should be disallowed
all together. Rather programmers should be forced to use the
whenall and whenany constructs

The fact that almost all participants tried to do something
procedural during the study, suggests that order and sequenc-
ing of the action execution is important and perhaps should
be allowed. One elegant solution could be do take advantage
of the indention formatting for sequencing. Blocks of code
can be executed left to right in order. To facilitate this the
keyword then: can be introduced. Code following it will
have to indented further to the right and therefore will be
executed after the compiler is done will all commands on
the same level as the then

The time functionality seemed to confuse a lot of people and
while some of that can be attributed to poor documentation
on the Sample sheet, some more thought can go into the
timer object. One potential redesign could be to separate
the timer functionality from the absolute time checks all
together.

Create libraries for standard functions and device behaviours
in order to improve efficiency. While the explicit nature of the
program helped the programmer understand the language
better, it makes the coding too verbose especially for longer

use cases.

o Additional functionality that was also supported by the tests
was to allow multiple languages to be used for the function
definition section.

e Another improvement is to give the language features so

that the "config" block of the code can also be written in

Yogurt

Remove the . input command from the device connecting

block for consistency with the rest of the language.

8.2 Implementation

While the evaluation of the programming model and the design of
the language yielded promising results, a fully capable compiler or
interpreter is yet to be developed for the language. Implementing
the language will not only be required for its adoption but also
provide opportunity to conduct more comprehensive user tests as
well as evaluate execution speed and computational efficiency. The
latter being of particular importance as the solution will have to
operate on devices with limited processing power due to their size.

8.3 Graphical Representation

Several of the solutions in the related work section are presented
through graphical user interfaces (GUIs). Undoubtedly the practice
has the benefits of reducing errors caused by typing or misinterpre-
tation of the data flow through the program. Therefore a graphical
representation for the programming language may be greatly bene-
ficial for its adoption. In addition, this research failed to identify any
studies that prove weather or not GUIs have a role in reducing the
learning curve required to learn a new programming language. Hav-
ing a graphical implementation will allow to test this hypothesis
further.

9 CONCLUSION

Yogurt is a domain specific, declarative, object-oriented program-
ming language, designed for the Igor and the Internet of Things. Its
main goal is to achieve high expressiveness by providing its users
with the right features to tackle the challenges in the domain of IoT
while staying simple and easy to learn. This is achieved by provid-
ing the right level of abstraction which allows the user to think in
terms of the problem as it is set in the real world and not concern
themselves with background process, memory management, con-
trol flow and dealing with low-level device outputs and inputs. User
testing reveals that, while there is always room for improvement,
the language presented in this paper manages to achieve that goal.
And while these results are by no means impervious to scrutiny,
the methodologies used to achieve them are all based on sound
principles. It is clear that the Internet of Things is only going to
become larger and larger and as this technology becomes part of
the lives of more people, it is essential that the tools created to
interact with it reflect both the direction of its development and
the needs of its users.

REFERENCES

[1] Krzysztof R. Apt. 1997. From logic programming to Prolog. Prentice Hall, London
; New York.

Athom. 2019. Homey. https://www.athom.com/en/

Z Bauman, U Beck, E Beck-Gernsheim, S Benhabib, RG Burgess, M Chamberlain,
P Thompson, P Chamberlayne,] Bornat, T Wengraf, et al. 2011. Qualitative
interviewing: Asking, listening and interpreting. Qualitative research in action
(2011), 226-241.

[4] Ivan Bratko. 2012. Prolog programming for artificial intelligence (4th ed ed.).
Addison-Wesley, Harlow, England ; New York.

[5] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2017. A high-level
approach towards end user development in the IoT. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing Systems. ACM,
1546-1552.

[6] Alan M. Davis, Edward H. Bersoff, and Edward R. Comer. 1988. A strategy for
comparing alternative software development life cycle models. IEEE Transactions
on software Engineering 14, 10 (1988), 1453-1461.

[7] Andrew Eisenberg and Jim Melton. 1999. SQL: 1999, formerly known as SQL3.
ACM SIGMOD Record 28, 1 (March 1999), 131-138. https://doi.org/10.1145/
309844.310075

[8] Raphael A. Finkel. 1996. Advanced programming language design. Addison-Wesley,
Menlo Park, Calif.

[9] Maurizio Gabbrielli and Simone Martini. 2010. Programming languages: principles
and paradigms. Springer Science & Business Media.

[10] Narain Gehani. 1991. Ada: concurrent programming. Silicon press.

[11] Adele Goldberg and David Robson. 1983. Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc.

[12] Patricia Hill and John Wylie Lloyd. 1994. The Gédel programming language. MIT
press.

[13] Jack Jansen and Steven Pemberton. 2017. An architecture for unified access to
the internet of things. XML LONDON 2017 (2017).

[14] Mengda Jia, Ali Komeily, Yueren Wang, and Ravi S Srinivasan. 2019. Adopting

Internet of Things for the development of smart buildings: A review of enabling

technologies and applications. Automation in Construction 101 (2019), 111-126.

Surabhi Kejriwal and Saurabh Mahajan. 2016. Smart buildings: How iot tech-

nology aims to add value for real estate companies. Deloitte Center for Financial

Services (2016).

[16] Brad Kelechava. 2018. The SQL Standard - ISO/IEC 9075:2016. https://blog.ansi.

org/2018/10/sql-standard-iso-iec-9075-2016-ansi-x3-135/

Svetomir Kurtev, Tommy Aagaard Christensen, and Bent Thomsen. 2016. Dis-

count method for programming language evaluation.. In PLATEAU@ SPLASH.

1-8.

Nicola Leonardi, Marco Manca, Fabio Paterno, and Carmen Santoro. 2019. Trigger-

Action Programming for Personalising Humanoid Robot Behaviour. In Proceed-

ings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI '19.

ACM Press, Glasgow, Scotland Uk, 1-13. https://doi.org/10.1145/3290605.3300675

[19] J. W. Lloyd. 1994. Practical Advantages of Declarative Programming. In
GULP-Prode’94, Vol. 1. Universitat Politecnica De Valencia, Peniscola, Spain,
3-17. http://www.programmazionelogica.it/wp-content/uploads/2015/12/
GP1994-1-000-031.pdf

[20] K.L. Lueth. 2018. State of the IoT 2018: Number of devices
now at 7B - Market accelerating. https://iot-analytics.com/

[2
[3

[

[15

(17

[18

state- of-the-iot-update-q1-q2-2018-number- of-iot-devices-now- 7b/

Mark Lutz. 2001. Programming python. " O’Reilly Media, Inc.".

Node-RED. [n. d.]. Node-RED : Node-RED Cookbook. https://cookbook.nodered.
org/

Oracle. 2019. Big Data @ Work: ’Internet of Things promises
limitless data, limitless possibilities. http://www.oracle.
com/us/dm/lpd100392169-oracle-iot-pa-2430014.pdf?elqTrackld=
896cc8cfbe2f47a89ffbf0090£240066&elqaid=38549&elqat=2

Amir Rahmati, Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2017. IFTTT
vs. zapier: A comparative study of trigger-action programming frameworks.
arXiv preprint arXiv:1709.02788 (2017).

Pethuru Raj and Anupama C Raman. 2017. The Internet of things: Enabling
technologies, platforms, and use cases. Auerbach Publications.

Anoja Rajalakshmi and Hamid Shahnasser. 2017. Internet of Things using Node-
Red and alexa. In 2017 17th International Symposium on Communications and
Information Technologies (ISCIT). IEEE, 1-4.

Rafael Ramirez, Malobi Mukherjee, Simona Vezzoli, and Arnoldo Matus Kramer.
2015. Scenarios as a scholarly methodology to produce “interesting research”.
Futures 71 (2015), 70-87.

Suzanne Robertson and James Robertson. 2012. Mastering the requirements
process: Getting requirements right. Addison-wesley.

Barbara G Ryder and Ben Wiedermann. 2012. Language design and analyzability:
a retrospective. Software: Practice and Experience 42, 1 (2012), 3-18.

Bjarne Stroustrup. 1995. Why C++ is not just an object-oriented programming
language. Vol. 6. ACM.

Paula Ta-Shma, Adnan Akbar, Guy Gerson-Golan, Guy Hadash, Francois Carrez,
and Klaus Moessner. 2017. An ingestion and analytics architecture for iot applied
to smart city use cases. IEEE Internet of Things Journal 5, 2 (2017), 765-774.

W. Trochim. 2006. Likert scaling.

Franklyn Albin Turbak, David K. Gifford, and Mark A. Sheldon. 2008. Design
concepts in programming languages. MIT Press, Cambridge, Mass. OCLC:
ocn214322997.

Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. 2014.
Practical trigger-action programming in the smart home. In Proceedings of the
32nd annual ACM conference on Human factors in computing systems - CHI '14.
ACM Press, Toronto, Ontario, Canada, 803-812. https://doi.org/10.1145/2556288.
2557420

Marcel Walch, Michael Rietzler, Julia Greim, Florian Schaub, Bjorn Wiedersheim,
and Michael Weber. 2013. homeBLOX: making home automation usable. In
Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing
adjunct publication - UbiComp ’13 Adjunct. ACM Press, Zurich, Switzerland,
295-298. https://doi.org/10.1145/2494091.2494182

David A. Watt. 1990. Programming language concepts and paradigms. Prentice
Hall, New York.

Pauline Sia Wen Shieng, Jack Jansen, and Steven Pemberton. 2018. Fine-grained
Access Control Framework for Igor, a Unified Access Solution to The Internet of
Things. Procedia Computer Science 134 (2018), 385-392. https://doi.org/10.1016/j.
procs.2018.07.194

https://www.athom.com/en/
https://doi.org/10.1145/309844.310075
https://doi.org/10.1145/309844.310075
https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-x3-135/
https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-x3-135/
https://doi.org/10.1145/3290605.3300675
http://www.programmazionelogica.it/wp-content/uploads/2015/12/GP1994-I-000-031.pdf
http://www.programmazionelogica.it/wp-content/uploads/2015/12/GP1994-I-000-031.pdf
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://cookbook.nodered.org/
https://cookbook.nodered.org/
http://www.oracle.com/us/dm/lpd100392169-oracle-iot-pa-2430014.pdf?elqTrackId=896cc8cfbc2f47a89ffbf0090f240066&elqaid=38549&elqat=2
http://www.oracle.com/us/dm/lpd100392169-oracle-iot-pa-2430014.pdf?elqTrackId=896cc8cfbc2f47a89ffbf0090f240066&elqaid=38549&elqat=2
http://www.oracle.com/us/dm/lpd100392169-oracle-iot-pa-2430014.pdf?elqTrackId=896cc8cfbc2f47a89ffbf0090f240066&elqaid=38549&elqat=2
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/2494091.2494182
https://doi.org/10.1016/j.procs.2018.07.194
https://doi.org/10.1016/j.procs.2018.07.194

APPENDIX

A ACKNOWLEDGMENTS

Sincere gratitude goes out to Jack Jansen, Steven Pemberton, Pablo Cesar and the rest of CWT’s Distributed and Interactive System’s group
for providing continuous council for the duration of this project as well as sharing their expertise and support. In addition, to Frank Nack
from the University of Amsterdam for his guidance in this endeavor. Finally, the same goes to all of the test participants and others who

N}

RS - T I S

shared opinions or advise in relation to this work.

B BASIC LIGHT SWITCH PROGRAM

Listing 1: Basic Light Switch Program

#define switch behaviour
actor switch():
config:
connect underlying architecture in which model has been implemented
states:
on: /on
actions:
self

#define light behaviour
actor light(switch):

config:

connect to underlying architecture in which model has been implemented
states:

illuminated: /active
actions:

on(switch.on):
illuminated <- switch.on

#instantiate light and switch
kitchen_light = light("//data/devices/light[location="'Kitchen']")
kitchen_switch = switch("//data/sensor/switch[location="Kitchen']")

#connect the instances of the devices together
kitchen_light.input(switch = kitchen_switch)

C MULTIPLE INPUTS FROM THE SAME ACTOR

Listing 2: Input from two different instances of the same actor

1 actor light(swl = switch, sw2 = switch):

D COMPLEX TRIGGERS AND GUARDS

Listing 3: Complex Triggers and Guards

actions:

1

2 on(PIR_sensor.presence):

3 whenall (PIR_sensor.presence = True, Dusk_sensor.night):
4 on <- True

5 whenany (PIR_sensor.presence = False, Dusk_sensor.night = False)
6 on <- False

7 on(Thermometer. temp) :

8 when(on = active):

9 R <- ChColor(Thermometer.temp, R)

10 G <- ChColor(Thermometer.temp, G)

11 B <- ChColor(Thermometer.temp, B)

12 else:

13 R <- 0

14 G <- 0

15 B <- 0

E TIMER EXAMPLE

Listing 4: Timer Example

on (RDF .engaged) :
when (RDF . engaged=True) :
locked <- False
time.timer (00:20:00.0):
locked <- True

IS B T R

F COMPLEX ACTOR EXAMPLE

Listing 5: Fridge Example

actor Fridge():
states:
temperature: Thermostat.temp
on: Thermostat.on
actor Door():
config:

connect underlying architecture in which model has been implemented

states:
open: /open
actions:
self
actor Light(Door):
config:

connect underlying architecture in which model has been implemented

states:
on: /active
actions:
when (Door .open = True):
on <- True
when (Door .open = False):
on <- False
actor Thermostat():
config:

connect underlying architecture in which model has been implemented

states:
on: /active
temp: /temperature
actions:
when(time.time(07:00)= True):
temp <- 5
when(time.time (24:00)= True):
temp <- 9

G TEST PARTICIPANT INFORMATION

Table 1: Test Participant Information

Participant 1 2 3 4 5
Age 26 23 25 24 27
Gender Male Male Male Male Male
Nationality Spanish British Dutch Greek Greek
Profession Student Student Student Student Student
Education MSc Data Science BSc Computer Sci- | MSc Data Science MSc Data Science MEng Electrical En-
ence gineering
IoT Knowledge Familiar Familiar Vaguely Familiar Familiar Familiar
Home Automation | Yes No No No No
Experience
Devices Light Buld, Chrome- | N/A N/A N/A N/A
cast
Configuration IFTTT through | N/A N/A N/A N/A
phone GUI
Programming Expe- | Professional Substantial Substantial Professional Substantial
rience
Programming Lan- | Python, JavaScript, | Python, Ruby, Java, | Python, Java, Oc-| C, Python, | Python

guages

Java

JavaScript,
HTML, CSS

SQL,

tave, Scala, Mathe-
matica, Delphi

JavaScript, R

H TEST PARTICIPANTS INFORMATION SHEET

| CWL_

Participant Information Sheet

Dear Participant,

Before the research begins, it is important that you are aware of the procedure that is followed in this study. Please
read the text below carefully and do not hesitate to ask for clarification on this text, if it is not clear please ask the
researcher before beginning.

Purpose of the study

During this experiment we are interested in evaluating the design of a new programming lanague designed for Igor,
whcih is an architecture for unified access to the Internet of Things. The purpose of the experiment is to evaluate the
lanague and not your skills as a programmer.

Explanation of task

You will be given five tasks to complete. Each task will contain a scenario describing the enviorment and behaviour
of an loT system. You will then need to write a program to fascilitate this behaviour as specified in the scenario. The
program must be written in the programming lanague described in the sample sheet provided. To do so you have to
use the computer and text editor available. The experiment is expected to take 60 minutes in total. You may run out
of time before you complete all the tasks and that is ok. Please try to think out loud as much as possible. Your answers
and screen will be recorded so that the data can be thoroughly analyzed later. You will be expected to answer a few
questions after the task.

Experimental Procedure

1. Read information Sheet (this sheet), and fill in the consent form
Fill in the subject information form (e.g. age, gender)

Once ready to begin, receive the task and sample sheet
Complete the tasks

vk wN

Answer a few post test questions

Freedom to withdraw
If you decide not to participate in this study, this will in no way affect you. If you gradually decide to stop the
research, you can do so at any time without giving reasons and without any consequences for you in any way.

Your privacy is guaranteed

Your personal information (who you are) remains confidential and will not be shared without your explicit consent.
Your research data are further analyzed by the researchers who collected the data. Research data published in
scientific journals are anonymous and cannot be traced back to you. Fully anonymized research data may also be
shared with other researchers.

Further information
If you have questions about this research, in advance or afterwards, you can contact the responsible researcher;
Ivan Gorbanov (lvan.Gorbanov@cwi.nl).

Sincerely,
Ivan Gorbanov
Centrum Wiskunde & Informatica

I SAMPLESHEET

| CWL_

Sample Sheet

General Information

The language tested in this study is a declarative, object-oriented programming lanague for programming Igor, which
is an architecture for unified access to the Internet of Things. In other words, Igor acts as a butler who is connected
to all sensors and smart devices in its user’s environment. The devices and data are stored in an XML repository which
allows for bi-directional updates. This means that as a device changes its state (ex.: switch gets turned on from being
off) the database will update itself automatically (data/devices/switch/active=true). In addtion, if a program changes
the value in the database, the coresponding device state will change as well. (ex.: data/device/switch/active=false ->
switch turning off)

General Structure

In this lanague we call loT devices “actors”. The program then defines what type of actors are used, what capabilities
they have (what actions can they perform), instantiates instances of those actors and how they connect to eachother.
Every program in this new language has the following structure:

Actor Class definitions:
In the first section the programmer must define all classes of actors in his or her system. The example below shows
the actor definitions for a switch and a light. Comments are seporated by hashtags.

actor light_switch(): # actor classes are given unique IDs
states: # each actor has one or multiple states which
engaged: /active are values in the database. Assign it a local
actions: name (CAN BE ANYTHING) and point it to its path
self in the database
as passive sensors cannot do anything apart
actor light(light_switch): from chancing their own state, their actions
states: are always ”self”
on: /active # specify any inputs to the actor in the
actions: brackets

when(light_switch.engaged = True): # actuators have actions which have a condition
on <- True that needs to be satisfied, multiple conditions
when(light_switch.engaged = False): can be nested in each other
on <- False # the action itself is always updating the
value of a state belonging to that actor.
the right side of the update symbol can only
contain a Boolean, number, “string”, state

variable or a function

Actor Instantiations:

After the class definitions are written each instance needs to be instantiated. The definition is given a unique id
followed by an equals sighn followed by the actor id and its path in the xml database. The path is specified in Xpath:
it starts with two forward slashes, followed by the path. If there are multiple nodes with the same name, filters can
be applied in square brackets to select the unique option.

dusk_sensor = dusk(“//data/sensors/dusk”)
bathroom_light = light(“//data/devices/light[location="Bathroom’]”)
bathroom_switch = light_switch(“//data/devices/switch[IP="192.168.37.68"]")

Actor Connections:

After all devices are instantiated, the programmer then needs to connect together the instances which interact with
eachother.

bathroom_light.input(light_switch=bathroom_switch)

User Defined Functions:

As the actions are restricted to only having values to the right side of the update expression, the user can take
advantage of functions for more complex needs. The functions are defined at the beggining of the program and are
written in Python like syntax. Only pure functions are allowed to be used. #maybe explain

function for converting kg to pounds
def pound_converter(input):

output = input * 2.205

return output

actor display(scale):
states:
on: /active
text: /display_text
actions:
when(scale.value):

text <- pound_converter(scale.value)

s

Action Triggers:

Action conditions gets reevaluated every time one of the values it incorporates changes. If the condtion contains just
the name of the variable the action will run everytime that value changes, like in the example above: text on screen
changes everytime the weight on the scale changes. The trigger in this case is implied. Nested whens can be used for
further condition checking. Multiple conditions can be put after the same when with an “and” or “or” logical operator.
If the programmer wants to specify an explicit trigger for the condition and action, they can do so with the “on”
command, like in the example bellow. Even though the guards check three different values before the “on” state
changes, they only get evaluated when “switch.active” changes.

actor light(switch, PIR, dusk):
states:
on: /active
actions:
on(switch.active):
when(switch.active = true):
when(dusk.night): # when checking a Boolean value “= true” can be implied
when(PIR.presence):

on <- true

Complex Conditions:
Some use cases will require the use of complex condtions where many states are checked. To avoid verbosity the
language is equiped with the following conviniences:

whenany(switch.active, dusk.night) # is the same as when(switch.active) OR when(dusk.night)
whenall(witch.active, dusk.night) # is the same as when(switch.active) AND when(dusk.night)

20

Time:
In order to fascilitate use cases where time is important the lanague provides a built in time function which works as

follows:

time

time

time.
time.
time.
time.
time.

time.

time

.timer(00:30:00.0):
.time(dd/mm/yyyy)
time(month=3July)
time(year=1994)

time(date=1)
time(day="Monday”)

now(mm/yyyy)

->

->

->
->
->
->

executes the

evaluates to

evaluates to
evaluates to
evaluates to
evaluates to

time(date=1, month=July or August) ->

code

true

true
true
true
true

bellow after 30 min

when the date matches the day of execution

everyday of July in every year

every day of 1994

on the first of every month of every year
on a Monday

evaluates to true on the first of July and August

-> returns the current time in the format mm/yyyy
.now(h/m/s/ms dd/mm/yyyy/) -> returns the current time in the format 12:24:35 21/06/2019

21

J TASKSHEET

| CWL_

Task Sheet

Please try and complete as many of the tasks as possible but dont worry if you dont manage to do them all in the
aloted time. The tasks are placed in order of increasing difficulty so it helps to do them in the order they appear to
familiarize yourself with the language. Use the sample sheet to learn the language constructs, you may ask the
supervisor for help but please do so as last resort, if he believes that the question is covered by the task sheet, he
may reffer you to it. Your 60 minutes start now!

Task 1:

Scenario: Imagine the light in the atrium of your house operates based on a presence sensor (PIR). However, the light
only comes on if a separate dusk sensor placed outside the house detects that it is dark.

Task: Please write a program which results in that behavior!

Task 2:

Scenario: Imagine that you have just installed new smart lights and switches in your entire home and you will need
to program their behaviour.

Task: Please write a program which connects the switch in the kitchen to the light in the kitchen and the switch in the
living room to the light in the living room.

Task 3:

Scenario: Imagine that your door locks by itself and unlocks when the presence sensor in your atrium detects presence
(PIR). Once you leave the house the door locks itself 20 seconds after the sensor can no longer detect you. When you
come back home, you use a key card on an RDF reader by the door to unlock it. Once you swipe the card, the door
stays unlocked for 20 seconds before it locks again.

Task: Write a program for the card reader, door and presence sensor which results in the behavior described above.

Task 4:
Scenario: Imagine that to achieve greater efficiency and comfort at home you decide to program your thermostat to
automatically adjust the temperature inside your house (T1) depending on the temperature outside (TO). You install a
new thermometer on the outside of the house that records the temperature and configure your thermostat to react
accordingly. However, you make a mistake and accidently buy a thermometer that outputs the temperature reading
in Fahrenheit, while your thermostat accepts only Celsius (C).
Task: Write a program which results in the following behavior:

e When TO is higher than 30 Cset Tl to 25 C

e WhenTO is lower than 10 Cset Tl to 20 C

e Otherwise TI =TO(0.25)+20C

The relationship between Fahrenheit and Celsius is as follows:

e Fahrenheit = (Celsius * (9/5)) + 32
e Celsius = (Fahrenheit - 32) / (9/5)

22

| CWL_

Task 5:
Scenario: Now imagine that the lights that you configured during task 2 are actually LED and can change colors.
Task: Copy your code from task two and extend it so that the lights change color depending on the season (month) of

the year as follows:

e Spring (March, April, May) -> color: direct sun (R = 255; G = 255; B = 255)
e Summer (June, July, August) -> color: overcast sky (R =201; G = 226; B = 255)
e Autumn (September, October, November) -> color: halogen (R =255, G =241, B=224)

e Winter (December, January, February) -> color: tungsten (R = 255; G = 214; B=170)

23

K TEST RESULTS

Task Critical Serious Cosmetic

- no expression to turn light off

- introduced a variable then tried to inject it in
1 the path pointing to the database like you

would be allowd to in Python

- used the python format() function + used an "AND" operator in the value assignment
- did not understand that input names need to|expression
match actor definition IDs - used "else" without an "on" typo in databse reference

- did not understand that input names need to|- used "else" without an "on"
match actor definition IDs - missed out explicit assignment in linking of actors

- missing PIR unlock expression
- missing an expression to lock the door if the
RDF is triggered bu noone comes in
3 - did not understand that input names need to
match actor definition IDs
- put "time.timer" inside a when - used "="instead of "<-", but only in one instance so error is
- logic on "false" not there - missing timer for the door to stay unlocked once |treated as cosmetic
- timer at wrong place; not needed there for |RDF is triggered - used "=="instead of "="
the logic of the task - missed out explicit assignment in linking of actors |- colon and indent on timer function

- mathematical expression in the action sec-

tion

- assigning values to variables in the action

section

- mathematical expression in the action sec-

tion

- assigning values to variables in the action

section

- mathematical expression in the action sec- |- used an "AND" operator in the "when" statement
tion - function deffinition after it has been used

- assigning values to variables in the action - missed out explicit assignment in linking of actors
section - function deffinition after it has been used

- mathematical expression in the action sec- |- missed out explicit assignment in linking of actors

- typo in mames of variables in datastore

24

L EVALUATION CRITERIA RESULTS

Table 2: Evaluation Criteria Results

Criteria Part. 1 | Part. 2 | Part. 3 | Part. 4 | Part. 5 | Avg. Score
Simplicity 4 4 4 4 4 4
Uniformity 4 4 5 4 4 4.2
Abstraction 5 5 5 3 5 4.6

Safety 4 4 5 4 3 4
Modularity 4 4 4 3 5 4
Efficiency 4 3 4 4 4 3.8

Expressiveness 4 3 5 3 4 3.8

25

	Abstract
	1 Introduction
	2 Igor
	3 Related Work
	3.1 Traditional Programming Languages
	3.2 Event-Based Frameworks
	3.3 Commercial Platforms
	3.4 State of the Art Summary

	4 Requirements Elicitation
	4.1 Use Cases
	4.2 Requirements

	5 Model
	5.1 Abstractions
	5.2 Model Features

	6 Language
	6.1 Program Structure
	6.2 Triggers and Guards
	6.3 User Defined Functions
	6.4 Time
	6.5 Complex Actors

	7 Evaluation
	7.1 Goals
	7.2 Method
	7.3 Results
	7.4 Discussion

	8 Future Work
	8.1 Language Improvements
	8.2 Implementation
	8.3 Graphical Representation

	9 Conclusion
	References
	A Acknowledgments
	B Basic Light Switch Program
	C Multiple Inputs from the same actor
	D Complex Triggers and Guards
	E Timer Example
	F Complex Actor Example
	G Test Participant Information
	H Test Participants Information Sheet
	I SampleSheet
	J TaskSheet
	K Test Results
	L Evaluation Criteria Results

