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Abstract  –  Electrodermal  activity  (EDA) is  a  physiological
signal which has been considered as one of the best indicators
of sympathetic arousal, since it provides an indication of sweat
gland activity. For this reason, it can be used to  measure the
engagement of the audience during a performance.  This work
exploits  the  use  of  wearable  EDA  sensors  to  measure  the
audience engagement during a live performance, testing a novel
method that works in real-time. In particular, we collected data
from  40  subjects  participating  in  a  jazz  concert  and  used
machine-learning  based  approaches  to  automatically  identify
the  level  of  engagement  during  the  show,  minute  by  minute.
Finally, we evaluate our algorithm using annotations reported
during the live event. Our results suggest that improvements are
needed  in  order  to  predict  the  audience's  engagement
accurately.  However,  this  paper  provides  new  insights
originated from the particular experimental setting: a live music
event. 

Keywords – machine learning, electrodermal activity, wearable
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1. INTRODUCTION
Our body reacts to external events, producing effects such
as changes in heart rate, blood pressure or sweating. In
particular  the  activity  of  the  sweat  glands,  which  are
present  throughout  the  human  body,  causes  electrical
variations in the skin. Since sweat is a weak electrolyte
and  good  conductor,  it  impacts  the  conductance  of  an
applied  current [14].  It  means  that  the  level  of  skin
conductance  changes  accordingly  with  sweat  gland
activity.  Exploiting  this  phenomenon,  it  is  possible  to
measure skin conductance at  the surface,  referred to as
electrodermal  activity  (EDA),  that  provides  significant
information  about  alterations  coming  from  the  central
nervous system that are associated with different types of
stimuli (such as emotion, cognition and attention) [14].
Therefore electrodermal activity describes  the ability of
the  human  skin  in  handling  electricity  that  can  be
measured by wearable sensors. EDA sensors are usually
placed on the fingers to measure skin conductance after
applying a fixed small voltage to that area [13]. This is
currently  an  important  topic  for  researchers,  the
correlation between such signals and the affective state is
constantly  investigated  and  many  studies  are  already
available in the literature [2].  In  particular,  it  is  known

that this signal embeds human-centered information: it is
highly correlated with the user's affective arousal [9] and
might  be  used  to  provide  a  continuous  and  implicit
feedback about the level  of  excitement  of  the user  [6].
This topic is further examined in Section 3.
Although it  is  quite  easy to  measure  EDA signals,  the
interpretation  of  the  gathered  data  implies  the
implementation of an algorithm that processes raw data to
yield meaningful information. First of all, EDA variations
are quite subject-specific, which means that the baseline
for the EDA readings is different from person to person
and  depends  on  several  factors,  such  as  the  person's
temperature and diet as well as how the sensor is attached
to the hand. For this reason, it is not possible to work with
absolute  values  and  the  algorithm  should  keep  these
factors  into  account,  and  extract  meaningful  quantities
from the raw data. Applying signal processing techniques
to the EDA signal, such as filtering and thresholding, may
not be robust, since as stated above EDA variations are
subject-specific [5]. Moreover, the algorithm has to deal
with the noise of the signals, in particular it should be able
to handle missing and corrupted data.

1.1 Research question
The  main  objective  of  this  research  is  to  plan  and
implement an algorithm which takes EDA data as input,
processes it  in real-time and gives the estimation of the
level of users' arousal as output. Estimating the affective
state in real-time and directly from the physiological data
is still a difficult task [5]. 
In order to propose a new real-time affect detector based
on EDA as the only source of physiological information,
we especially focus on changes of the affective state in
terms  of  arousal,  rather  than  in  the  identification  of  a
precise  emotion.  Therefore,  the  proposed  detector  will
aim at automatically analyse the intensity of the emotion
felt by a group of people, without a qualitative judgement
relative to valence (positive or negative) or the kind of the
emotion (sadness, happiness, interest, etc.). 
In  particular,  the  context  of  our  research  is  about
measuring  the  engagement  of  the  audience  during  a
performance. However, there is not a unique definition of
engagement,  which  implies  there  are  several  ways  to
measure it and to interpret this information. Therefore, a
primary question is about the meaning of physiological
signals and their relation with the concept of engagement.
The first question we want to answer is the following:
• What  does  'engagement'  mean?  What  is  the  relation

between engagement and EDA signals?
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In  Section  3.1  we  provide  an  overview  on  previous
literature to answer this question from a theoretical point
of view. Besides that, the main research question that we
attempt to address is:
• To  what  extent  can  we  measure  the  level  of

engagement  of  the  audience  during  a  performance
using a machine-learning based algorithm?

To answer  this  question we collected  EDA sensor  data
from  40  participants  attending  a  live  jazz  concert.
Afterwards, we processed the raw data and used machine-
learning  methods  to  train  a  classifier.  The  output  is  a
representation of the audience's engagement, divided into
three levels of intensity.
Specifically the contribution of this research is to provide
creative  people  with  a  tool  of  real-time  analysis  of
audience  reaction  during  a  live  show  or  performance.
While there is large literature on mapping EDA to arousal,
there is only a small amount of work about measuring the
audience engagement in real-time during a performance
[10]. However, research in this direction can have a direct
impact on many applications [18]. 

1.2 Structure of the paper
The paper is structured as follows: the next section briefly
introduces  the  research  context  of  our  project,  and
provides  some  examples  of  possible  applications.  In
Section 3 we present a conceptual exploration of audience
engagement,  how we  define it  and how it  is  related to
physiological sensors. Moreover, a review of the relevant
work is presented.  Section 4 describes our method. We
initially collected EDA data from 40 subjects attending a
live jazz concert. We implemented an algorithm based on
a  machine-learning  approach  to  learn  the  level  of
engagement of the audience in such a way that it can be
possible  to  measure  the  audience  feedback  minute  by
minute. Afterwards,  we present our results in Section 4
and we discuss strengths and limitations of our project in
Section 5. We finally outline our conclusion in Section 6. 

2. MOTIVATION 
Emotion  is  a  fundamental  part  of  human  experience,
however  only  few  decades  ago  researchers  started  to
investigate  how  machines  can  help  in  understanding
emotions,  and  to  develop  new  technologies  aimed  at
understanding  affective  states  [4].  Nowadays,  including
emotion  to  improve  the  experience  of  users  with
computers  has  become  a  main  concern  in  the  area  of
Human Computer Interaction [13]. 
Affective Computing is a scientific field focused on the
study  and  development  of  intelligent  systems  that
recognize and react to human affective states. Researchers
working in this field believe in the importance of emotion
in  communication,  and  are  interested  in  exploring  the
application of emotion recognition by machines. As stated
by Picard,  emotions  have  a  major  impact  on  essential
cognitive  processes  and  if  one  wants  to  improve  the
interaction with computers, it is important to "teach" them
to recognize affect  [12].  One main step of  this process
consists in detecting affect. 
Affect  detection  is  critical  since  it  aspires  at
understanding the user's affective state, however, it is still
a  challenging  issue  because  emotions  are  concepts  that

can  not  be  measured  directly  [4].  Moreover,  the
interpretation of the gathered data implies the application
of an accurate algorithm that processes raw data to yield
meaningful  information.  To  detect  user's  emotions,  a
technological  system  can  get  input  data  from  different
sources:  such  as  facial  expression,  speech,  gesture
movements, etc. However, these behaviours can be easily
masked by intentional control. Instead, to avoid possible
artefacts,  physiological  signals have  recently become a
more  reliable  emotional  channel  for  human  emotion
recognition, especially thanks to  the unbiased nature of
the signals that originate autonomously from the central
nervous  system  [13].  Generally,  these  signals  can  be
collected  from  the  cardiovascular  system,  respiratory
system,  muscular  system,  or  via  brain  activities  and
electrodermal activity,  [13].  Measuring these parameters
means  obtaining  streams  of  numbers,  apparently
meaningless in itself. However, it is possible to interpret
this data and link it to emotions, through understanding
their  relation and implementing mathematical  tools  that
facilitate  its  interpretation.  For  this  reason,  the  field  of
physiological  computing  has  become an  active  area  of
research [16]. 

2.1 Applications
In general, Affective Computing can be used in a broad
range of  applications, from improving human-computer
interaction  according  to  the  user's  emotional  state,  to
assess the audience feedback during a show. 
Getting  the  affective  state  of  an  audience  member
attending  a  performance  or  watching  a  film  may have
many  potential  applications  in  the  creation  and
distribution of an artistic product [6]. It can be useful to
select  the  best  target,  know  what  emotional  effect  the
show has on the audience, or identify which are the most
interesting  parts  according  to  the  audience's  reaction.
Another  example  consists  of  recommendation  systems,
where users' ratings are used to outline their preferences,
predict the success of a new product or other marketing
strategies. 
The  real-time  property  is  fundamental,  since  the  main
difference between an offline algorithm and a real-time
method is that the former can be more useful for research
purposes, especially for the analysis and understanding of
physiological  data,  in  relation  to  human  emotions.  The
latter, on the other hand, can be used also for more artistic
applications. For example, it could be possible to enhance
performances with the audience feedback by showing a
real-time visualization of the physiological data obtained
as output of our algorithm. 
There is a small amount of work in which the audience's
engagement,  measured  through  biometrics,  is  used  as
real-time  input  to  performance.  The  main  challenge  of
this  project  consists  in  the  interpretation  of  the  EDA
signal in real-time, because the processing of the raw data
should  be  simple  and  fast  so  that  meaningful
interpretations can be used by artists or performers.

3. RELATED WORK
This  project  combines  computer  science  with
psychophysiology, since it deals with the relation between
emotions and physiological signals and aims at creating a
bridge through the implementation of an algorithm. The



main  focus  is  the  detection  of  affect  states  by  using
techniques that identify patterns in physiological activity,
which are known to be related to the emotional state of
the subject [5]. 

3.1 Measuring the arousal of emotions 
Emotion  is  a  subjective  concept,  hard  to  define  and
measure. For our research, we referred to the dimensional
theory developed by Lang [9],  that  is  derived from the
scientific view of emotion by Russell [17]. He asserts that
all emotions can be located in a two-dimensional space, as
coordinates  of  affective  valence  and  arousal.  Arousal
denotes  the  level  of  intensity,  with  passive  emotions
having a low arousal,  and energetic  emotions having a
high  arousal,  while  valence  represents  the  positive  and
negative scale of the emotion (see Fig. 1).

EDA sensors give an indication of the user's reaction in
terms of the arousal. However, through the analysis of this
simple biometric data, we are not able to assign a positive
or negative quality to the emotion recorded. EDA is thus
linearly  correlated  to  arousal  and  reflects  emotional
intensity changes. 
As  a  consequence,  we  can  identify  emotional  events
analysing the EDA signal,  and we are interested in the
detection of relevant changes in the emotion's intensity,
rather than in the identification of the precise emotion. We
aim at automatically identifying those events in real-time
and assess the intensity of the audience arousal, which we
will refer to as the engagement of the audience. Assuming
that, we define audience engagement in terms of affective
states of arousal. Normally, we think of engagement as a
synonym of attention and interest with a positive valence,
but  one  can  be  attentive  and  interested  with  negative
valence too. The aim of a performance is to provoke an
emotional reaction on the audience, either with a positive
(eg. funny) or negative (eg. dramatic) valence. In other
words,  arousal  is  more  significant  in  measuring
engagement: in these terms, we can measure how sleepy
or  how  active  the  audience  is.  Intuitively,  it  seems
unlikely that a performer would want the audience to feel
sleepy or bored. 
Latulipe et al. point out that measuring valence can also
be  misleading,  since  the  main  risks  would  be  in  the
differentiation  between  how  the  performance  makes  a

person feel and how much they like a performance. Given
this, measuring valence is considerably more difficult that
measuring  arousal.  Moreover,  investigating  the
importance of  valence  data,  they found that  performers
are  less  interested  in  it,  since  positive  and  negative
emotions are equally valued in art manifestations [10]. In
conclusion, the dimension of experience that we want to
measure deals with the ability of the performers to capture
and maintain the audience's attention. 
After  defining  the  concept  of  engagement,  another
important  choice  to  take  is  related  to  the  methodology
used to  measure it.  Hernandez  et  al.  list  three different
approaches: self-reports (interviews or surveys), external
ratings,  and  physiological  information  [7].  While
collecting explicit  feedback (surveys,  focus groups with
test audiences) is still  very common since it  is fast and
direct, EDA signals provide a source of implicit feedback
which  can  be  used  to  infer  users'  reaction  at  a  fine
granularity,  enabling  us  to  get  for  example  the  mean
reaction of a whole audience at different instants of the
performance.  On the contrary,  explicit  feedback usually
provide only a single rating for the entire show, moreover
survey  forms  are  limited  by  their  reliance  on  viewer
memory,  and  focus  groups  are  constrained  by
participation  costs  and  time  limitations  [18].  An
alternative method consists of asking experts to annotate
participants' engagement state during the presentation of
stimuli.  This  approach  is  based  on the  theory of  facial
expression  recognition.  Although  facial  movements  can
be  detected  at  a  distance,  they  can  be  voluntarily
controlled and in general not completely representative of
the actual affective state [7]. Although each one of them
has its  advantages and drawbacks,  physiological  signals
seem to  represent  the  less  disruptive  method to  collect
data  and  they perform as  an  effective  indicator  of  the
engagement  level  of  people  in  different  settings.  In
addition, among the different physiological signals, EDA
is easier to measure, especially if compared to functional
magnetic  resonance  imaging  (fMRI)  or
electroencephalography (EEG) [11]. 

3.2 EDA signal 
Electrodermal  signals  are  composed  of  two  main
components:  skin  conductance  level  (SCL)  and  skin
conductance  responses  (SCRs).  The  first  is  the  tonic
component that represents slow changes while the second
one,  the  phasic  component,  is  characterized  by  rapid
peaks.  SCL  is,  in  fact,  the  product  of  the  general
activation of the sympathetic nervous system [11], and it
could  be  measured  considering  the  absolute  level  of
conductance  of  the  skin  in  absence  of  any  particular
external  stimuli.  The  values  of  this  component  change
slowly  over  time,  according  to  many  different  factors,
such  as  personal  psychological  state,  temperature,  or
hydration, so it also varies between individuals. Instead,
SCR reflects the effect of unexpected or relevant events.
Discrete  environmental  stimuli  are  associated  with  the
shape  of  electrodermal  signals,  being  represented  by
abrupt  increases  in  skin  conductance.  Fig.  2  shows  an
example  of  an  electrodermal  signal  over  time:  SCL is
modulated  by  temporary  peaks  (SCRs).   Usually,  in
experimental settings, the aim is to prove that distinct and
isolated stimuli are associated with peaks in the signal. 

Fig. 1: The circumplex model by Russell [17], eight affect states plotted 
in the two-dimensional space



For  this  reason,  it  is  necessary  to  analyse  the  two
components  separately.  The  illustration  of  SCR  is
presented in Fig. 3, where the most common features are
outlined.  However,  these  measurements  are  not  always
easy  to  compute  since  multiple  skin  conductance
responses  can  overlap,  for  example  when  subsequent
reactions  occur  before  the  first  has  ended  [11].   The
features selected for the aim of this work are described in
Section 4.3.  

 4. METHOD
We  propose  a  novel  EDA signal  analysis  that  aims  at
detecting and quantifying the level of engagement of the
audience  minute  by  minute.  To  this  end,  a  machine-
learning framework has been developed, each component
is  described  following  the  main  steps  in  the  pipeline
illustrated by Ping et al. [13]. (see Fig.4)

4.1 Data collection
We conducted an experiment during a live jazz concert in
order to collect data from EDA sensors. The experiment
took  place  at  the  Goethe-Institut  Niederlande  in
Amsterdam  on  the  29th of  April  2016. Thanks  to  this
acquisition stage we were able to gather input data from
three different sources and organise it accordingly in three
datasets:
• EDA signals
• Annotations
• Questionnaires

The objective is to combine these pieces of information in
order to find patterns in the data, and these observations
will  help  us  to  train  a  model  that  measures  audience
engagement. It has to be noticed that data collection is the
only step that took place during the experiment. The data
was successively analysed in laboratory. 

4.1.1 EDA signals
Wearable  sensors  specifically  assembled  by  the
Distributed  and  Interactive  Systems  group  [19]  at  the
Centrum Wiskunde and Informatica (CWI) in Amsterdam
were  used.  Thanks  to  the  network  setting  used,  it  was
possible  to  collect  data  from several  users  at  the  same
time exploiting  a  wireless  connection.  In  this  way,  we
were  able  to  receive  packets  of  data  simultaneously,
which is very important for real-time experiments. 
Our sample consists of 40 participants,  15 male and 25
female  with  an  average  age  of  32  years.  No  specific
criteria  were  adopted  for  the  recruitment.  Participants
were  given  short  instructions  about  the  aim  of  the
experiment  and  about  the  meaning  of  the  sensor  data.
They were asked to be on location 30 minutes before the
start of the concert, in order to put the sensors on and fill
in  the  pre-questionnaire.  They were  asked  to  wear  the
sensors  for  the  entire  event  and  they  were  given  free
entrance.  The  concert  lasted  approximately  three  hours
and was divided as  follows:  performance of  first  band,
break, performance of second band.  The entire recording
process  was  synchronized  and  controlled  and  the  EDA
measurements  were  sent  to  a  receiver  through wireless
transmission.  For  technical  reasons,  we  set  up  two
receivers in the concert room. Participants were divided
into  two  abstract  groups,  according  to  the  sensors  ID
number. Each receiver recorded data from 20 sensors (i.e.
one group). The outcome of this step concretely consists
of  two CSV files containing all  data related to the two
groups.  For  each  file  (respectively length:  121328  and
114327 lines), every line is composed of a timestamp, a
string message, a sensor ID number, a EDA value (from 0
to 1023).

1461954491.286,,1625,835
1461954491.250,"crcerror 0xB202",,,
1461954491.411,"next loop",,,

              Tab. 1: An example of input EDA data

Some fields can be empty. An example is shown in Tab. 1.
The  first  line  represents  a  complete  data  packet  from
sensor number 1625, with EDA value equal to 835. The
string message is present only in case of an error which
implies missing data (see line 2 in Tab.1) or in case of
“next  loop”  (see  line  3  in  Tab.1).  This  last  message
appears each time after the receiver communicated with
each sensor in the group singularly. Each loop has no a
fixed  duration,  but  in  general  it  lasts  around  1/1.5
seconds. This information has been used to organise the

Fig. 3: Graphical representation of principal SCR components [3]

Fig. 4: Pipeline adopted for the implementation of the algorithm 

Fig. 2: An example of EDA signal plotted over time



data collected in this stage. Therefore, the final outcome
is  represented  by  a  matrix  where  the  number  of  rows
corresponds to the number of total loops recorded and the
number of columns is the number of sensors, in this case
20 for each group. Each item in the matrix is an integer
number  that  ranges  from 0  to  1023 and  represents  the
EDA value detected by the sensors. 

4.1.2 Annotations
To evaluate the algorithm, specific moments  during the
concert  were  reported:  through  an  application,  three
people from the team were in charge to annotate when the
level of engagement of the audience was perceived to be
either very high or very low. This step allowed us to have
a ground-truth in order to assess the final accuracy of the
algorithm. In fact, at the end of the concert, we obtained
three  files.  Each  file  contains  a  list  of  timestamp-
annotation  pairs  created  by  each  annotator.  The
annotations are extremely simple and represented by a -1
or  a  +1,  respectively  the  atmosphere  perceived  in  the
room  is  very  calm  or  very  excited,  according  to  the
definition of engagement given in Section 3. 
Another  common  method  to  define  a  ground  truth  is
trough a direct  self-assessment [10],  [15]. It  consists of
asking  each  participant  to  annotate  explicitly  his  own
mood,  minute  by  minute.  However,  this  approach  has
some drawbacks: first of all it is quite subjective and too
intrusive,  it  may  distract  the  subject  from  the
performance. 
Instead, according to the method we adopted, the outcome
of  this  step  consists  of  a  unique  file  where  all  the
annotations were put together and ordered by timestamps.
Finally,  values  were  arithmetically  summed  minute  by
minute and separated in two vectors. The first vector has
length 75,  which  is  the number of  minutes  of  the  first
band's session. Similarly,  the second vector contains 59
values and it is related to the second band (see Fig.5 and
Fig.  6).  Data  collected  during  the  break  has  not  been
further  analysed.  In  conclusion,  these  vectors  represent
the ground truth and are used to train and evaluate the
algorithm (see Section 4.4). 

4.1.3 Questionnaires
Before and after the concert, a questionnaire was provided
to the participants in order to assess mood, interest in the
concert, quantity of alcohol consumed during the course
of the night. Particularly, we needed this information to
further  analyse  our  results.  In  Section  5,  we  describe

different results, obtained by comparing different subsets
of our sample. 

4.2 Data preprocessing
We  implemented  the  next  steps  using  Python  as
programming language, since it offers useful libraries for
data manipulation and analysis (Pandas), and for general
scientific computing (NumPy, matplotlib).
In Section 4.1.1 the structure of the actual input data is
described.  The  input  matrix  has  been  divided  in  two
smaller  datasets:  “df1”  and  “df2”,  containing  the  EDA
values  collected  during  the  first  and  the  second  band
respectively. 
The first task is to deal with missing values. During the
experiment almost 30% of data was lost, which means it
has  not  been  received  correctly  by  the  receiver.  In
programming,  this is  translated by a not defined value,
that  causes  “holes”  within  the  sequence  of  integer
numbers  accurately  recorded.  To  solve  this,  an
interpolation method has been implemented. Missing data
are  filled  using  the  interpolate() function  available  in
SciPy.  Values  are  estimated  with  a  linear  interpolation
method. Moreover, at this step, the data of five sensors
have been removed from the analysis, since the signal was
too corrupted or people left before the end of the concert.
Therefore, the actual sample consists of 35 participants.
The  other  important  factor  to  consider  in  the
preprocessing stage is the  subjectivity.  As stated above,
EDA signals are affected by individual differences. This
challenge is relevant especially for algorithms that rely on
a machine-learning approach, because basically the idea is
to learn from a set of data (i.e. a group of people) and then
generalize  to  a  broader  sample  that  includes  new data.
Usually,  this  problem  is  solved  taking  into  account
normalized  values  or  individual  baselines.  However,  in
our  case,  the  implementation  of  both  methods  is  not
straightforward. Normalization is computed knowing all
the values over the period of time studied,  not feasible
when processing data in real-time, or minute by minute as
it  is  our  case.  Concerning  the  baseline,  it  is  useful  to
detect a general trend in the signal but it can be recorded
asking people to relax for 10/15 minutes, which was not
possible during our experiment, for logistic reasons. 
However, since our target is the entire audience and we
take into account average values, we can assume that the
subjectivity  factor  will  affect  each  minute  in  the  same
way.  This  assumption  is  further  analysed  in  Section  5,
where  a  comparison  between  collected  values  and

Fig. 6: Annotations summed during the second part of the concertFig. 5: Annotations summed during the first part of the concert



normalized values is given.
Finally, we implemented a function to reduce the effect of
outliers. In our case, the main source of artefacts is due to
quick sensor movements, which are impossible to control
during a  concert  [7].   High  frequency motion  artefacts
have  been  detected  and  attenuated  using  linear
interpolation. 

4.3 Data processing
Before training the classifier, signals have to be translated
into vectors. Each element in the vector is a number that
describes  a  feature.  In  order  to  continuously  measure
arousal from the analysis of EDA signals, a large number
of features  can be extracted [8].  According to previous
research ([21], [7]), we selected the most important and
common features used to describe EDA signals.
SCR events are generally sparse and vary considerably in
their  intensities.  Furthermore,  due to  the  subjective
differences  across  people,  the  SCR events  may not  be
temporally aligned and could also consist of some events
that  may not  be  related  to  the  same  stimulus  [18].  To
mitigate this effect in the algorithm, we considered EDA
values by aggregating them into intervals of one minute.
We focus on statistical measures in the time domain, since
they are  easy and  fast  to  compute.  Therefore,  for  each
minute, we compute the average value of the following
variables considering all sensors:
• minimum EDA value;
• maximum EDA value; 
• mean EDA value;
• median EDA value; 
• negative slope:  it captures an overall decrease of the

response;
• positive slope:  it captures an overall increase of the

response; 
• number  of  peaks:  peaks  are  detected  analysing

changes in the derivatives.
These selected features are used to train the classifier. In
practice the output data of this step is represented by a list
of 7-unit length vector. Each vector describes one minute
during  the  concert  according  to  the  features  selected,
therefore  we  have  75  vectors  for  the  first  part  and  59
vectors for the second part. 

4.4 Classification
The first parameter to define is the number of classes. In
Section  4.1.2 we describe  how we created  the  ground-
truth  through  the  annotations  process.  Vectors'  values
range from -3 to +7 for the first band and from -3 to +3
for  the second band.  In  order  to  reduce the number  of
classes we mapped each value into three superclasses. We
use  {0,  1,  2} as  labels  for  the  new classes.  Class  0  is
associated  to  those  minutes  characterized  by  a  low
engagement by the audience, this is when the total value
in the annotation is less than -2 (i.e. at least two negative
annotations were reported in that minute). Class 2, on the
contrary,  represents intervals of time characterized by a
high engagement, and consequently the total value in the
annotation  is  more  than  +2  (i.e.  at  least  two  positive
annotations  were  reported  in  that  minute).  In  order  to
make this representation more objective, we check if the
annotations  have  been  reported  by different  annotators.
Lastly,  for  intermediate  values,  it  is  hard  to  define  the

level of engagement perceived, therefore we map them in
class 1.  The input data for the machine-learning part  is
presented as follow:

• 75  vectors  with  7-unit  length  (first  part  of  the
concert);

• 75 respective labels;
• 59  vectors  with  7-unit  length  (second  part  of  the

concert);
• 59 respective labels.

To proceed, a training set that represents the data to learn
from, and a test set that is used to make prediction have to
be defined. Since each element in the test set has a label
associated (validation set)  that  represents which class it
belongs  to,  we  are  able  to  evaluate  the  algorithm
comparing predictions and real labels. 
To  accomplish  this  task,  we  implement  k-Nearest
Neighbour (k-NN).  By using k-NN,  we first  store data
and  then  elaborate  it,  associating  classes  through  a
comparison between the training set and the test element
we want to classify. 
We also implemented a Support  Vector Machine model
which requires a training phase to learn the classes using
the function fit()  before we can apply it to the validation
set with  predict(). The SVM approach aims at finding a
hyperplane that separates classes, more precisely the one
that  best  generalise the classification.  It  means that  the
objective is to find the separating hyperplane that has the
largest  distance  to  the  nearest  training  elements  of
different classes. At the same time, this hyperplane has to
correctly separate as  many instances  as  possible.  These
two objectives can be in opposition to each other. The C
parameter  gives  us  the  opportunity  to  manage  this
problem.  A low  value  of  C  gives  a  large  ‘minimum
margin’, even if that hyperplane misclassifies more points
(so the number of training errors increases). A high value
of C allows in particular situations to correctly classify
elements  but  with  a  smaller  minimum margin  between
different classes (so a loss in generalization properties of
the classifier). So the parameter C can control the trade-
off  between  errors  of  the  SVM  on  training  data  and
margin maximization.
In addition to performing linear classification, with SVM
we  can  apply  a  non-linear  classification  using  the  so
called ‘kernel trick’. Through its use, the input is mapped
into  high-dimensional  features  spaces.  Solving  the
algorithm with a linear kernel is faster, but typically the
predictive performance is better with a non-linear kernel. 
Data has been analysed in two different ways. First we
consider the two bands together. Therefore the input data
includes  134  vectors  with  7-unit  length.  Using  10-fold
cross validation, original  data is partitioned into 10 sub
samples: 9 are used as training set while the other one is
the test set. This process is then repeated 10 times, and the
10  results  are  averaged  to  obtain  a  final  accuracy
estimation.  This  approach  based  on  repeated  sub-
sampling  guarantees  that  all  vectors  are  used  both  for
training and validation, especially each vector is used for
validation only once. 
With  the  same  procedure,  we  analysed  three  more
different scenarios, in order to investigate possibly noisy
factors.  Therefore,  in  the  second  scenario  we  use
normalized factors. In the third scenario, four participants



have  been  removed,  those  who  drank  more  than  three
drinks  before  and  during  the  concert  (according  to  the
questionnaires). In the last scenario, six participants have
been removed, those who were not really interested in the
concert (according to the questionnaire). 
Finally,  in  order  to  explore  how  the  music  has  an
influence  in  our  experiment,  we  analysed  the  data
collected  during  the  first  band  and  the  second  band
separately. Similarly as with the previous scenarios, a 5-
fold cross validation is used. In the next section accuracy
results are presented. 

5. RESULTS
The  last  step  is  the  evaluation.  Comparing  associated
labels  with  the  predicted  ones,  we  know  how  many
correct matches we obtain from our algorithm and we can
compute  accuracy,  which  is  the  fraction  of  predictions
that  are  correct  over  the number  of  all  predictions and
gives an understanding of how efficient our algorithm is.
The following tables show the accuracy obtained. 
Tab. 2, Tab. 3, and Tab.4 present the result for the four
scenarios  previously  explained,  using  k-NN  and  SVM
(with  linear  and  rbf  kernel).  In  particular,  Scenario  1
includes  35  participants  (only  corrupted  data  has  been
removed  from  the  original  sample),  Scenario  2  is
represented  by  the  same  input  data  that  has  been
normalized during the preprocessing step, considering for
each  sensor  data  its  minimum and  maximum collected
during  the  concert.  Comparing  Scenario  1  and  2  it  is
possible  to  analyse  potential  differences  caused  by the
subjectivity factor that is inherent to physiological signals.
Scenario 3 includes 31 participants: from the sample in
the previous situations, four participants that asserted to
having consumed a certain amount of alcoholic beverages
before and during the concert have been further removed
from  the  analysis.  Finally,  in  Scenario  4  we  want  to
investigate the effect of removing those participants who
confirmed not to be interested in the concert itself. 

Tab.  2  present  the  results  obtained  in  the  different
scenarios using k-NN method and tuning the parameter k
from 1 to 10.  Accuracy values range between 0.48 and
0.7  (underlined  values  in  Tab.2).  Although  with  a  low
value for k (k = 1, 2, 3) accuracy is lower than 0.6, in the
other cases values oscillate around 0.65. Higher values are
obtained  using  SVM  approach.  In  Tab.  3  we  present
results obtained with the linear kernel and in Tab. 4 with
rbf kernel (with parameter C = {0.001, 0.01, 0.1, 1, 10,
100,  1000}).  The  highest  accuracy  obtained  by  this
experiment is 0.71 (underlined value in Tab. 3) which is a
positive result.  It  has to be noticed that the aim of this
work is to explore the extent to which we can predict the
level  of  engagement  in  an  audience  using  machine
learning methods. This approach represents the novelty of
our work: the interpretation of results should take this into
consideration. However, there is room for improvements.
An interesting output, other than accuracy values, arises
from comparisons between the different methods adopted
and  the  different  scenarios  analysed.  Firstly,  the  SVM
method gives better result than k-NN, while there are no
substantial  differences  between  linear  and  rbf  kernel.
Tuning the C parameter also gives only slightly different
results, however the best results are obtained when C is
set to 0.1. Interestingly, similar results are obtained in the
four  different  scenarios.  The  reason  is  likely  to  be
“hidden” in the algorithm itself:  in fact, all the features
selected are computed as an average over all the sensors
data. Assuming there is a noisy factor (due for example to
the alcohol, or to the limited interest  in the event),  this
affects all the signal in the same way. Although potential
differences  might  even  each  other  out,  carefully
comparing the results in the four scenarios, we can notice
that  in  scenario  2  (normalized  data)  and  in  scenario  4
(“not  interested”  participants  removed)  slightly  higher
results are obtained. This means that further research in
understanding how different moods, habits, interests can
affect  EDA  data  is  needed,  although  for  different
applications. 

k= 1 k= 2 k= 3 k= 4 k= 5 k= 6 k= 7 k= 8 k= 9 k= 10

Scenario 1 0.6 0.63  0.58 0.63 0.62  0.64 0.65 0.65 0.65 0.67

Scenario 2 0.54 0.57  0.56 0.62 0.64  0.68 0.68 0.69 0.70 0.69

Scenario 3 0.48 0.61  0.63 0.65 0.6  0.66 0.65 0.65 0.64  0.65 

Scenario 4 0.62 0.64 0.6 0.68 0.67  0.63 0.66 0.65 0.66 0.65
Tab. 2: Accuracy results using k-NN 

C= 0.001 C= 0.01 C= 0.1 C= 1 C= 10 C= 100 C= 1000

Scenario 1  0.69 0.69 0.69 0.68 0.65 0.66 0.68

Scenario 2 0.69 0.69 0.71 0.68 0.63 0.6 0.6

Scenario 3 0.69 0.69 0.7 0.68 0.66 0.64 0.65

Scenario 4 0.69 0.69 0.69  0.67  0.67 0.68 0.66
Tab. 3: Accuracy results using SVM with linear kernel

C= 0.001 C= 0.01 C= 0.1 C= 1 C= 10 C= 100 C= 1000

Scenario 1 0.69  0.69  0.69  0.69  0.69  0.69 0.69

Scenario 2 0.69 0.69 0.69 0.69 0.69 0.69 0.69

Scenario 3 0.69 0.69 0.69 0.69 0.65 0.65 0.65

Scenario 4 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Tab. 4: Accuracy results using SVM with rbf kernel 



k= 1 k= 2 k= 3 k= 4 k= 5 k= 6 k= 7 k= 8 k= 9 k= 10

Band 1    0.49    0.52 0.48 0.6 0.57 0.56 0.6 0.6 0.59 0.61

Band 2    0.58    0.55 0.45 0.65 0.65  0.64 0.71  0.67 0.67 0.67
Tab. 5: Accuracy results using k-NN, data divided into Band 1 and Band 2

C= 0.001 C= 0.01 C= 0.1 C= 1 C= 10 C= 100 C= 1000

Band 1
Linear kernel

0.65 0.65 0.61 0.63 0.56 0.53 0.52

Band 2
Linear kernel 

0.75 0.75 0.75 0.75 0.71 0.71 0.69

Band 1
 Rbf kernel

0.65 0.65 0.65 0.61 0.57 0.57 0.57

Band 2 
Rbf kernel

0.75 0.75 0.75 0.75 0.75 0.75 0.75

Tab. 6: Accuracy results using SVM (linear and rbf kernel), data divided into Band 1 and Band 2

Tab.  5  and  Tab.  6  represent  the  accuracy  obtained
analysing data collected during the first part of the concert
and  the  second  part  separately.  Tab.  5  presents  results
obtained by the k-NN method and Tab. 6 by SVM. For
this analysis we only consider the sample from scenario 1
(35  participants,  which  means  the original  sample with
corrupted  data  removed).  Surprisingly,  significant
differences are obtained: in particular, considerably higher
results  are  recorded  while  processing  data  from  the
second part  of the concert.  It  is  hard to assess  that  the
music being played has a direct influence in this result. It
is rather possible that during the second band it was easier
for  the  annotators  to  decide  whether  the  audience
engagement was high or low. In fact, while the first band
performed acoustic jazz and played a soft music driven by
the sound of a saxophone, the second trio played a more
modern jazz, with electric guitars and faster rhythm.

6. DISCUSSION
The aim of this study is to explore the implementation of
a machine-learning based algorithm to detect the level of
engagement in an audience during a live performance. As
described  in  Section  4,  the  implementation  of  a  EDA
signals-based  system  involves  various  steps,  from  data
collection to the final classification. The precision of each
stage is interdependent and besides that, each stage can be
completed  using  different  techniques.  This  means  that
several choices have to be made during the process, and
each of them affect the final accuracy. 
One main complication encountered in the data collection
step is  about  the annotation process.  The output  of  the
algorithm gives  a  general  representation of  the  average
engagement  of  the  entire  audience.  We  decided  to
evaluate  the  audience  as  a  whole  instead  of  analysing
individual  signals.  This  decision  is  motivated  also  by
practical  reasons.  In  fact,  to  evaluate  an  algorithm that
processes signals separately, individual annotations would
have  been  necessary.  However,  asking  participants  to
report their emotion continually during the performance is
very intrusive,  and the risk is  to collect  subjective data
affected by distraction. 
The annotation method we adopted aims at avoiding this
issue.  However,  it  is  hard  to  understand  whether  the
audience is actually engaged or not. This has also been
reported  by  Webb  et  al.  as  a  result  highlighted  during

interviews with artists  [20]. People clapping or dancing
are examples of the audience being engaged, but a viewer
can also be absorbed in the performance just with his eyes
closed.  Moreover,  the  biometric  response  collected
throughout a performance may be completely unaffected
by the  performance  being  viewed  [10].  The  annotators
had to pay attention to the general mood perceived in the
room. Whether participants were paying attention to the
concert or not, does not represent the main focus. Within
the 40 participants, it often happened during the concert
that they were divided into smaller groups: some of them
were interested in the music, others were chatting close to
the bar, others were maybe more relaxed. This approach
of  annotations  consists  of  reporting  massive  levels  of
engagement  of  an  audience  and  might  not  be  fully
representative and objective. For example, we noticed that
more +1 were annotated, rather than -1. This fact can be
explained  in  different  ways:  for  example,  it  might  be
easier to identify when the audience is highly engaged,
rather  than  annotate  relaxed  or  boring  moments.
Moreover,  other  noisy  factors  are  the  room  not
particularly illuminated and the fact that people wearing
sensors were just a fraction of the entire audience.  
 
Also  the  processing  of  physiological  signals  is  not
straightforward  and  needs  to  address  several  important
challenges.  Physiological  signals  are  noisy  and  vary
considerably  according  to  the  type  of  stimulus.
Additionally,  they also  depend  on  the  individual  user's
physiological  and  psychological  state  [18].  There  are
many personal characteristics that affect the response to a
stimulus  (e.g.  people  become  habituated  to  stimuli:
repeated stimuli cause a decreasing reaction intensity, past
experiences lead people to have different reactions to the
same stimulus).  Poh et  al.  also point  out  other  smaller
details  that  can affect  the comparison between multiple
signals:  for  example,  there  are  differences  in  the
measurements  according  to  the  hand  the  sensors  are
placed on (left or right), and there are different sweating
mechanisms according to the type of stimulus (physical,
cognitive  or  emotional)  [14].  These  factors  make
information extraction from EDA data difficult. 
Moreover,  in  Section  3.2  we  outlined  the  two  distinct
components  of  the  signal.  While  the  phasic  component
shows  quick  changes,  the  tonic  component  changes



slowly and has little correlation with the user reactions to
stimuli  [18].  Various  signal  decomposition  approaches
have been proposed to separate the two components, such
as the linear convolution model proposed by Bach et al.
[1] or the method based on nonnegative deconvolution by
Benedek et al. [2]. However, these techniques are limited
by computational complexity, for this reason we consider
the original one-dimensional signal. 
Each  computation  in  the  proposed  algorithm  has  been
implemented trying to find a trade-off between simplicity
and  efficiency.  For  example  the  number  of  peaks  is
obtained  by  the  number  of  downward  concavities
analysing  the  derivatives.  A  more  efficient  approach
would include overlapping peaks detection, the count of
their duration and amplitude.  
Therefore,  using  EDA signals  to  measure  the  arousal,
some limitations  must  be  considered.  Finding the  right
trade-off  between  high  accuracy  and  computational
feasibility is the core issue. 
We tried to deal with the presence of large artefacts and
quantization  problems,  these  challenges  are  even
amplified in an uncontrolled setting. In fact, the majority
of the experiments in this area is carried out in controlled
laboratory  settings  [14].  On  the  contrary,  our
observational measurements were performed during a real
public event. We believe that, on one hand, this provides
more realistic data. As stated by Wang et al., being part of
an  audience  is  a  group  experience  and  this  important
factor  is  neglected  in  a  laboratory  setting,  where
physiological  data  is  recorded  for  each  participant
individually  [19].  On  the  other  hand,  a  real  settings
involves  some  complications.  First  of  all,  during  a
controlled experiment it is possible to ask participants to
sit quietly for few minutes. In this way the researcher is
able to obtain a baseline signal that can be used to reduce
the subjectivity factor [14]. Moreover, it is not possible to
control  the  stimuli  received  by  the  participants,  which
makes  it  harder  to  analyse  their  physiological  signals.
Another difference consists in the type of stimuli. While it
is  common  to  analyse  significant  responses  to  distinct
stimuli,  our  study  deals  with  continuous  input  data.
During the experiments there were many types of stimuli,
some  related  to  the  bands  playing,  others  caused  by
interactions  between  audience  members.  This  causes
unpredictable flows and overlapping peaks in each EDA
signal. 
In  conclusion,  although  EDA  signals  are  robust
physiological  signals in emotion recognition, since they
reflect emotional arousal directly from the central nervous
system.  However,  EDA  signal  measurement  may  be
affected by environmental  conditions,  different types of
stimulus sources and placement of the sensors. Although
controlled experimental conditions can be applied, there is
still  room for  improvement  to  reduce these  artefacts  in
real settings [13]. 
Using more than one physiological measure at a time can
lead to  improvements [15].  Jerritta et  al. show that  the
classification accuracy seems to depend on the number of
physiological  signals  being  measured:  for  the  same
dataset, classification accuracy is higher when the features
from all  the physiological  signals are used.  In  contrast,
when  only  one  physiological  signal  is  used,  the
classification accuracy is lower [8]. 

Regarding  the  classification  step,  the  choice  of  which
class best represents each minute during the concert was
the main challenge. When the value was higher than +2 or
lower than -2 with different annotators reporting the same
level  of  engagement,  the  choice  was  actually
straightforward.  However,  ambiguous  situations  arise
otherwise. The task is to associate the most representative
label to each minute during the concert, but it is hard to
give an interpretation when annotations are contrasting or
when during a minute no annotations are reported.   This
leads  to  a  bad  characterization  of  class  1,  because
different  situations  are  described  by  the  same  label.
Improvements should be applied in particular to this step,
starting from a more detailed description of the classes,
both in terms of quantity and quality. 
Moreover, we noticed that the most predicted label is 1,
especially for wrong predictions. This might be due to the
fact that during the live event the level of engagement of
the audience stayed moderate in general. However, it can
also  be  that  the  annotations  create  an  unbalanced
distribution  over  the  classes,  leading  the  classifier  to
model the classes not appropriately. 

The  last  point  we  want  to  outline  is  the  temporal
resolution. Ideally the method should give a second-by-
second  accounting  of  engagement.  However,  this
configuration might depend on the application. While a
continuous result could be useful for television, it might
not be the most suitable for artistic performances. In fact,
Latulipe  et  al.  outline  that  live  performances  (concerts,
ballet,  theatre,  etc.),  typically have a narrative structure
and the stimulus-response interpretation ignore this [10],
since the audience would be labelled as highly engaged
only during the fastest movements or “coup de theatre”.
Further research could investigate how these results can
be  interpreted  and  implemented  in  a  powerful  tool  for
artists. 
Only a small number of studies reported in the literature
have investigated the potential of physiological signals as
implicit  measurement  for  the  engagement  of  multiple
users [15]. Our results outline the opportunity to employ a
machine-learning  approach  to  differentiate  three  classes
according the level of engagement in the audience. It  is
not possible to directly compare similar studies, since the
physiological signal measured and the number and type of
classes  are  different.  The real-time emotion recognition
using physiological signals is still in its early stages [15].

7. CONCLUSION
In  this  paper,  the  implementation  of  a  physiological
signals-based system for measuring the engagement of the
audience  during  a  performance  has  been  discussed.
Engagement recognition from EDA signals still involves a
number  of  challenges,  especially  for  real-time
applications. 
Assuming  one  can  collect  implicit  audience  feedback,
questions arise around parsing and making sense of the
information.  The  main  issues  are  sensor  noise,
environmental  effects,  and  the  choices  in  the
implementation  of  a  signal  processing  algorithm.
Physiological measurements have the potential to play an
important role in the investigation of audience response:



they  represent  an  implicit  and  objective  source  of
information  and  the  devices  to  record  such  data  are
becoming more and more compact and non-obtrusive [6].
The availability of modern wearable physiological sensors
represents  the  opportunity  to  investigate  physiological
signals in order to measure audience engagement during
live scenarios [7]. 
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